Acta Cryst. (1963). 16, 627

627

Fourth and Higher Order Inequalities
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An approach is made to the problems which arise in the application of inequalities of order four
or more. The main features of the fourth-order case are examined in a way which lends itself to
extension to orders exceeding four, and an example is given of the application of fourth-order

inequalities to a small problem.

Introduction and notation

Karle & Hauptman (1950) showed that the necessary
and sufficient condition that the electron density be
nowhere negative is that all determinants of the form

|Fo)  F(hy) F(hy) . F(hy-y)
|F(h;)  F(o) F(h,—h;) . F(hp1—hy)
‘F(h) F(hi—hy)  F(o) . F(hy_1—hy)
F(Bue) F(hi—hy) F(hy—hso) ... F(0)

(L
shall be positive or zero. (Here h; is any vector index
and h; its inverse). These writers also showed that
all possible inequalities based upon the positivity of
o are contained in these determinantal inequalities.
As is well known, U may replace F in these deter-
minants since the U’s also have a positive transform,
and this results in a strengthening of the inequalities.
Following Kitaigorodski (1957, 1961) we call such
determinants containing U’s ‘connecting determi-
nants’.

Various writers, notably MacGillavry (1950) and
Goedkoop (1950) have considered the systematic
incorporation of crystallographic symmetry into such
inequalities, whilst Bouman (1956) and Taguchi &
Naya (1958) have shown that connecting determi-
nants can be expressed in more compact form if the
crystal is centrosymmetric and if the choice of indices
h is such as to make the determinant symmetrical
about both diagonals. They show, for example, that
under a linear transformation the inequality

1 U(h) U(h') U(h+h')
| U(h) 1 Um—=h) Uh) ~o
| U(h') Ub'~h) 1 _ U(h) =
{ U(m+h')y U(h') U(h) 1
2)
is equivalent to the two inequalities
[1+U(h+h')] (Uh)£UM)]| 0 3)
[U(h)+ U(h')] (1 UM =h)] |~

recognizable as the ‘sum and difference’ inequalities
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in determinantal form. (This is also shown in the
Appendix without the use of transformation ideas).
In general a doubly symmetrical connecting deter-
minant of order 2»n (or 2n+1) is reducible to a pair
of determinantal inequalities of order n (or one of
order » and one of order n+41), each element of
which contains two U’s instead of one (except for
1 row and 1 column of the larger determinant in the
latter case).

In recent years the direct approach to crystal-
structure determination has most often been made
through probability methods, inequalities being too
weak to solve any but fairly simple structures.
Kitaigorodski (1957, 1961), however, has provided
some stimulus to the study of inequalities of higher
orders and has clearly shown that their strength
increases as the order = of the determinant increases
and should reach a strength comparable to the
existing probability methods. These points are
returned to in our discussion.

Von Eller (1955, 1960, 1961, 1962) has also made
an extensive study of these inequalities, making use
of the geometrical relationships which arise among
the angles @ defined by @=arc cos U.

In the present paper we are concerned with the
problems which arise in the application of inequalities
of all orders by computer methods, with special
attention to the fourth-order case, and with the
objective of finding a unified approach.

Since the unknown quantities to be found are the
signs of the U’s it is apparent that the number of
these which are involved in any given inequality is a
more important criterion of the complexity of the
inequality than is the order of the determinant
employed. For this reason the compact form (3) has
no advantage over the less compact form (2), and
we formulate what follows in terms of the general
form (1) treating (2) as a special case which is included
in the general form.

In this paper we write

uyy=|U(hi—hy)|, syy=U(hs—hy)/|U(hi—hy)|
and define hg=0. Thus s; is the complex conjugate

of s, uiy=u; and the connecting determinant of
order n becomes
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! Si0Us0
S0iUos 1
-Dn = Sij’u,ij

SojUoj

So(n-1)U0(rn~1) Si(n-1)Ui(n—1)

in which it is convenient to regard the (n—1) off-
diagonal elements on the top row or first column
as being independently chosen, the remaining
3(n—1)(n—2) elements each side of the leading
diagonal being dependent upon this choice and being
termed dependent elements.

Now the expansion of a determinant of order =
contains n! terms, each of which is the product of
n elements together with the appropriate sign. The
n elements which occur in any term are such that no
two are from the same row or the same column;
thus in every term the subscript ¢ occurs just once
in the left-hand position and just once in the right-
hand position. Thus the sum of the vector indices of
the clements involved in any term is independent of hy.
This is true for all ¢; it follows that the sum of the
vector indices of the elements involved in each and
every term is zero, t.e. every term is a structure
invariant.*

Thus typical terms in the expansion of a fifth-
order connecting determinant would have sign

(—1)?s0:SikSkjSj1810 OT perhaps (— 1)PsosSkrsijsiisio
which is (— I)PSOiSiijzSzo

where p is the total number of inversions of order
among the subscripts (Muir & Metzler, 1960, p. 14).
Invariant products of signs such as these will be called
tri-products, tetra-products, etc, according to the num-
ber of non-trivial signs involved. Of such products
the tri-product is the most useful since it is the
simplest which is non-trivial and is already familiar
in crystallography. A tri-product can be made up
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Sjoljo oo S(n-1)0%(n-1)0 ‘
8jiUjs - Sm-1)iU(n-1)i

1 e oo Sn-1)jU(n-1)j : (4)
Sjn-1Uj(n=1) -« 1

each pair of indices ¢j, such as sgsij8j0, or one for
each dependent element. Furthermore, since sj;s;;=1,
any invariant sign product may be expressed as the
product of a number of primary tri-products, as
pointed out by Kitaigorodski, e.g.

S0:SikSkjS71S10 = S0:SikSk0 . S0k SkjS;j0-S05Sj1S10

SikSkjSjiSl1i = S0iSikSko.SokSkjS70.805871810. S0181:S50 -

For the purposes of evaluating the connecting
determinant for a centrosymmetric structure we may
regard each s;; as an independent variable having the
values +1, and therefore the primary tri-products
may alternatively, and more conveniently, be regarded
as independent variables. Since all invariant sign
products may be expressed in terms of these it follows
that a connecting determinant of order = has
28m-D@=2 possible values, of which the negative ones
correspond to disallowed sign combinations.

The remaining
(n—1)!

n!

[3!(n—3)! 6(n—4)!
tri-products, such as s:sjxsk:, Will be termed secondary
tri-products. Information concerning these is just as
valuable for the purposes of sign determination as is
information concerning the primary tri-products;
however they have the role of dependent variables.

If in (4) we multiply the ith row by si and the
ith column by so; then the value of the determinant
is unchanged since it has been multiplied by s;0s0:.
When all the rows and columns are so multiplied we
have

J2~(n—1)(n—2)J =

1 U0 Uj0 U(n-1)0
Uos 1 80787i810Uj; 80(n-1)8(n-1)iSi0U(n—1)i '
D, = Uoj 80:8:7S70U 15 1 80(n-1)S(n-1)jSjoU(n—-1);
Uo(n-1)  S0iSt(n-1)S(n—1)0Ui(n—1) 80787 (n—1)S(n—-1)0Uj(n-1) ‘e 1

from any three different indices, such as s;;s;18%i;
thus »!/[3!(n—3)!] such tri-products may be formed
for a determinant of order ». Tri-products which
include the suffix zero will be called primary tri-
products as these have special importance in what
follows. Clearly, there is one primary tri-product for

* If U(h) becomes U’(h) when the crystallographic origin
is shifted by 8r then U’(h)=U(h) exp [27¢dr.h]
. IIU’ (h)=exp [27¢8r. Zh]IIU (h)
which is independent of the choice of origin if Zh=0.

in which the only sign products appearing are the
$(n—1)(n—2) primary tri-products which will hence-
forth be identified according to the scheme

. « B 6 9
& . y ¢ 0
. p 4 . ¢ ¢
| . 0 g ¢ . x
. 7. 0 7 7




R. DIAMOND

in which the dots represent the independent and
diagonal elements, e.g. o=s0s880, and o is the
complex conjugate of «. In what follows we shall
be concerned only with centrosymmetric structures,
however, so that this distinction may be ignored.
The majority of these features have already been
pointed out by Kitaigorodski (1957) but it should
also be emphasized that the distinction drawn here
between primary and secondary tri-products is a
matter of choice (their roles may be interchanged
by permuting rows and columns in D), the point
being that only 3(n—1)(n—2) of the tri-products are
independent and one must therefore choose which
ones to regard as independent variables. Algebraically,
we must expect all tri-products to have equivalent
status and this is apparent in any expansion of D.

Preliminaries for the fourth-order case

The fourth-order connecting determinant may be
expanded as

1 Siotio  SjoUjo  SkoUk0
SoiUoi 1 87iUji Skl
0 <D, = | Soi%oi 5iUji kiUkt
SojUo0j SijUis 1 SkjUrs
SoxUox  SikUik SirUik 1
— 2 2 2 2 2 2
= 1 —ujo—ujp— o — Ui — Ujes — U5

+ uFufo + U, + uR U
+ 2{xuostujitio+ Bruorttrithio + YUorUisUso
+ (& By )uiuirur:
— (By)uoiuirursuso — (Y X )uoithiyUixUio
— (o f)uosusiuiruro } (5)

in which the product of two primary tri-products is
a tetra-product and the product («fy) is the sec-
ondary tri-product. The symbols «, f, efc, will always
be enclosed in round brackets when their product is
intended.

Suppose we set a=+, f=y=— and calculate D,
and find it negative, we may then make a statement,
written {«|fy)>, which says

‘If « is + and § and y — then we get a violation’.

In this form the statement tells us what must not be.
All remaining possibilities constitute what may be.
However, we wish to find what must be and from the
outset we phrase the statement positively, thus

‘If o is + then at least one of 8 and y is +’
or
‘If # and y are — then & is —’

or in general

‘If every item on the left is +
then at least one item on the right is +’
or

‘If every item on the right is —
then at least one item on the left is —

2
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in which an item is any invariant sign product
(of whatever order), which appears in such a state-
ment.*

Such a statement arising from a single test of D,
will be called a primitive statement. Evidently primitive
statements are always conditional (except for »=3)
and may be read in a variety of ways; any item may
be transposed with change of sign, thus

(x|By) == Bly)

so that any combination of items may be brought
into the ‘if’ part, the remainder appearing in the
‘then’ part of the statement. Statements arising from
a single determinant (i.e. a single choice for h;, h;, hy
etc) will be termed associated statements. There are
eight primitive associated statements for the fourth-
order case corresponding to the eight values of Djy:

Lafyy, By, {Blya), {yl«p),
<0‘ﬂ|'y>: <'y0‘|ﬂ>a <.8y,0‘>: (‘Xﬂﬂ)

of which the first will be termed the leading statement
and the last the trailing statement.

Examination of (5) shows that D, is smallest when
o= f=y=—; therefore none of these statements can
occur in the absence of the leading statement (this
is general for all ). Further, they cannot all arise at
once since no possible sign combination would then
remain. These appear to be the sole constraints, so
that 27—1=127 combinations of primitive associated
statements are possible for n=4.

Finally we define the length, [, of a statement as
the number of items appearing in it.

It is now our objective to show, in as general a
way as possible, how to reduce any combination of
primitive associated statements to its most concise
form, and especially to derive statements of length 1
which are unconditional.

Digestion of associated statements

1. The digest regarded as the union of primitive
statements

We define the digest of any given statements as
the shortest statement or statements which together
completely contain the given statements. We consider
first a pair of statements which differ only in respect
of a single item which occurs on opposite sides of the
given statements, e.g.

{axBy|del)y and {(aflydel)

which may arise from a fifth-order inequality. If we
rearrange these statements so that the unique item,
y, appears alone on the left, then they read

* If the ‘if’ part of a statement contains no item it is
to be read as ‘in any case ...’, e.g. {Jafy) means ‘in any
case at least one of «, B, v is positive, {(xfy|) means ‘at least
one is negative’.
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Pl=a)(=$)0el) and {(—)|(— &) (= B)oel);

thus whatever the sign of y, at least one of the items
on the right must be +, and the union, or digest,
of the given statements is

(=a)(—p)del) usually written {(xp|del) .

This illustrates the principal rule for the combina-
tion of statements, which will be called the cross-over
rule, that if two statements differ in this way then
the digest is obtained from either statement by
deleting the item which crosses over, and the digest
is complete in the sense that it completely contains
the truth of the given statements.

In order to broaden the applicability of the cross-
over rule we consider next the equivalence rule. It has
already been pointed out that by transposing and
changing the sign of an item any combination of items
may be brought into the left-hand part of the state-
ment, which may be regarded as the ‘if’ part, so that
any statement containing two or more items may be
arranged to contain two items in the ‘if’ part. Suppose
the ‘if’ part of a statement says ‘If « and g are
positive ...’ then it is already known that (xpB) is
positive also, and of the three items «, 8 and (xp)
any two will do to specify the condition. This leads
to the general formulation of the equivalence rule as
follows:

‘Any item in a statement may be replaced by the
product of itself with any second item in the state-
ment, the product being transposed to the opposite
partition if the second item occurs in the right-hand
partition, and is not transposed if the second item
occurs in the left-hand one’.

For example x may be replaced by («f) in the

following
lepyy=(«p)By>

and («f) may again be replaced

{aP)By> = {(xpV)By);
(xlBy) = {al(xB)y) .

Now consider any two statements containing the
same items, for example {xfB|yde() and {(xyde|BL)
in which the items which cross over are in bold
type, and replace the first bold-faced item in the
first statement by its product with the second,
the second by its product with the third, and so on,
and treat the second statement in the corresponding
way, thus

(aplyoel)
and (e

(ayde| ey = {aydel(By)L)
= (a(yd)0el(By)L) = (x(yd)(de)el(By)LDd

then the two given statements have been converted

or again

= (xl(By)ydel)
(yO)(By)del) = (ax(yd)(de)|(By)el)
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to equivalent forms containing the same items, only
one of which crosses over, so that the cross-over rule
may be applied. Thus

(aplydel) {xydelBLy = {a(yd)(8e)l(By)T)

where > denotes ‘implies that’.

The process is evidently general; thus any two
statements of length I containing the same items may
be united to form a single statement of length 7—1
which completely contains the given statements, and
it follows from this that any statement of length I
may be regarded as containing 2%-% statements of
length lp>1. However, if more than two items cross
over in the given statements then there is more than
one way of expressing the digest, depending on the
order in which the crossing items are replaced by
products.

There is one further aspect of the problem which
must be considered before the rules may be applied
indiscriminately and this is the question of com-
pleteness. In the examples so far given, two statements
have been reduced to one which completely contains
the truth of the given statements, which may then be
discarded, the digest statement alone being retained.
Such digests are said to be complete. In the example

CIIIRGIDERCITD

the statement on the right follows from the given
statements® but it does not completely contain them;
it states that ‘if « is + then y is +’, which is true,
but the information that 8 is also + is lost if («|y)
is the only statement retained. The simplest approach
to this problem is to enquire how many primitive
associated statements are represented by the given
statements and by the digest and to say that the
latter shall not be less than the former, and if it is,
then the shortest of the given statements must also
be retained to make the digest complete, i.e.

T2 < 0t (6)

in which the l, are the lengths of the various given
statements, lg the lengths of the digest statements,
and I, the length of the primitive statements. If the
equality in (6) is satisfied then the digest is said to
be exact; if not then it is inexact in the sense that
one or more of the primitive statements is contained
more than once in the digest. In the following ex-
amples the statements on the left are given statements
and the bold-faced statements are the ones required
to form a complete digest in each case

By -Lalpyy = By (7)
laByd. <alfy = By (8)

* This involves a simple extension of the cross-over rule,
that when the given statements have one item which crosses
over, this vanishes and each partition of the digest statement
is the union of the corresponding partitions of the given
statements.
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alfy . Blyy = Laly) 9)

Of these (7) is an example of an exact digest,
(8) is inexact in that the primitive statement (x|8y)
is contained twice within the bold-faced statements,
and (9) is a case where no advantage in conciseness
is obtained from uniting the given statements, two
statements of length two being required however the
result is expressed.

Evidently the left-hand side of (6) represents the
number of primitive statements contained in the given
statements provided that the former are all different.
We now question whether (6) provides a valid test
for completeness if this is not so. Suppose we have
any two statements of length /, as given statements
and suppose that together they may be derived from
three, not four, statements of length (I,+1), then we

631

Thus any statement of length 3 from (10) and any
of length 3 from (11) represent a typical pair of
statements having a common statement of length 4
among their antecedents. Evidently they can be
expressed so that the items they have in common,
(y96) and (xpy), both occur in the same partition
with only one remaining item in each case, & and 9,
which are different, so that there is no possibility of
combining these statements further, except to form
{x(yd)|(xpy)d) which is retrogressive, being equiv-
alent to {«p|yd).

The three rules so far described are sufficient for
the digestion of any combination of statements,
and we conclude this section with some examples in
which the primitive statements are listed one above
the other, and bold face indicates the statements
to be retained.

(i)

(iii)

(iv)

(aByy = {(«B)By) B
(aBlyd = {aB)Bly) } {ap)ly) = Ll(aBy)y)

IlaBy)a) .

(Bylay = {(By)ylay = {yl(«fy)o)
lapyy
(1B } By

v
<ﬂ|70‘> } <ﬂ| >
CaBly) v
(aBy) = LBy = (ala
(Brlay = {(By)yla) } (Priloy = dtxpm)y (epy)) (12)

(yelB) = Lal(By)B)
CaBly) = {aBl(BY)
ey _

<0€|ﬁ}’> } <'ﬂ7> = <(ﬂ'}’)]7> <
Bylay = (By)yla)
yalB) = {al(By)B
(aBly) = LaBl(By))

b <al(B)y = (allap)

(By)iay = lax(xBy)) l
Uapyyy. 13
Lol = opy |

may show that the two given statements cannot be
united by the cross-over rule, so that the question of
testing the completeness of the result does not arise.
We illustrate a general case. Let the three statements
of length (l;4-1) be {JaByd), {xBlyd) and {xyd|B)
and let the second of these be common to both the
statements of length l,, then

(apydy = <(aﬂ)lﬂy5>} {aB)lydy = <I(xBy)yd)

(xflyd) = {(«B)Blyd) ) = (yO)(xBy)0)  (10)
(aBlyd) = <al(By)yo)

= (x(y9)i(By)) (x(y9)i(By))
(apdlBy = Capdl(By)y | = xyd)l(xpy))

= (x(y9)d[(By)) D
in which = denotes application of the equivalence

rule and } denotes union by the cross-over rule.

In (i), as in other examples, we prefer to express
the digest in terms of («xfy) rather than in terms of
products such as («f), since the former is a secondary
tri-product and the latter a tetra-product.

In (iv) the statement {|8y) is retained because it
must be retained (to satisfy (6)) at the stage when
the statement {(87)|«) is obtained, and it is this latter
statement which is then used further.

Finally, we remark that an alternative approach
to the question of completeness does exist, and this
is through the theory of information of Shannon
(1948), according to which it may be shown that the
information content of p statements of length /I,
containing the same items is given by

I—logs (2!~ p) bits

on the assumption that the a priori probability of a
statement of length 1 is 1. On this basis the informa-
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tion contained in the five primitive statements given
in (13) is 3—logz 3=1-415 bits; similarly that con-
tained in {|(«fy)) is 1 bit and that in {|§y) 0-415 bits.
Thus the digest is complete, but the approach does
not indicate that the digest given in (13) is inexact,
the statement {Jxfy) being contained twice. How-
ever, the relevance and implications of the theory of
information have not yet been throughly studied.

I1I. The digest regarded as the tntersection of short
Statements

In this section we consider a second approach to
the general problem of forming the digest of a list of
primitive statements which is complementary to the
first and which has the merit of lending itself readily
to machine computation. (Not all the features of this
approach have yet been fully worked out however;
see Discussion, § (iii)).

We consider the fourth-order case for which l,=3
and consider the primitive statements which are
required to produce the statements {|) and (|y);
these are

JaBy) {xlBy) {ylxp) and (y«|) for (|B)

and

(aBy) (xlBy) {Blya) and (apfly) for (|y).

These groups of primitive statements will be termed
the specification for {|f) and {|y) respectively. Of
these we note that the first two statements are
common to both specifications, 7.e. the intersection of
the two specifications is {|axfy).{x|fy)> and the
digest of these is (|fy). This result is quite general,
that a statement of length [, (such as {|By)), may
be regarded as the intersection (of the specifications)
of [ statements of length 1, these latter having the
property that their left-hand and right-hand parti-

ety
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tions, when united (left with left and right with right),
form the corresponding partitions of the longer state-
ment. Fundamentally, the reason for this is that the
specification for (|8), written S, consists of a list
of all those primitive statements which have § on
the right, S, is all those having y on the right, whilst
the specification for {|8y) corresponds to all those
statements having f and y on the right, and these
must obviously be the intersection of Sz and S,

The relationship between this and the foregoing is
most easily seen in terms of the diagram (Fig. 1(a))
which represents a rhombohedron having the eight
primitive statements attached at its vertices. Every
pair of primitive statements which are related by a
single cross-over are then connected by edges of the
rhombohedron; thus to every edge may be attached
a statement of length 2 which is the digest of the two
primitive statements thereby connected, and similarly
to every face may be attached a statement of length 1,
which is the digest of the four primitive statements at
its corners. It is manifest that any statement such as
{|ya) may be regarded as the union of the statements
{JaBy> and {B|yx) which its edge connects in the
diagram, or as the intersection of the faces {|x) and
{|y> which meet at this edge. Similarly the statement
{Blyo) occurs at the intersection of the three faces
<ﬁl> Clyy and {|a).

Fig. 1(b) shows an extension of this in which the
four statements comprising the specification for
{(xBv)) (see (12) above) are joined to form a tetra-
hedron. This tetrahedron intersects the {|«) face along
the diagonal connecting {|xfy) and {Bylx) whose
digest is {|a(xfy)), t.e. the statement formed by
uniting corresponding partitions of {|x) and {|(xf7))-

Since every combination of primitive statements
must include the leading statement, and since all
primitive statements (except the trailing one which is

(lagy

{apr)
(b)

Fig. 1. A geometrical analogue showing the relationship between the eight primitive statements of the fourth order case, and
various shorter statements. The arrows identify the three faces of the rhombohedron which are outlined entirely with full lines.

For further explanation, see text.
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Table 1. A machine procedure for digestion

([T T

(|

W & Sx
(—=1-29)
(—1=-8)&C
W+C+1

W & Sg

Sop = S & Sp
W&sS
(—1-8)
(—~1-8) & C

Spy = Sp &S,
W&S

L[

W

OO i~ OO MM H OOO M iy oo b <]0‘ﬂy>

(—1-8)
(—1-8) & C
W+C+1

OO I HMFEOO H O Iy OF=O ((Xlﬁy}

Coroo O=00 © 0o~ —p Omor {Blyx)
CO-OO COMF = 000 M o~ (Vaf)
OO0 =00 o Oo-ro o ~~oo {(&fly)
O-MOO OO O OFmO o ~omo {(yYx|f)

o

rare) are connected to it by lines which are the inter-
sections of two of the four statements (|}, {|f), |y)
and {J(«fy)) it is clear that many of the 127 possible
combinations can be expressed in terms of those alone,
and we now describe a procedure which has been used
for this purpose. The question of the adequacy of the
procedure to deal with all possible situations will be
returned to in our Discussion § (iii).

A machine procedure for digestion

A computer programme has been written in which
successive determinants are set up and the eight
values of each are calculated if, and only if, (i) at least
one of the six % values involved is > 3* and (ii) the
value of D, is found to be negative when x=f=y= —,
As each of the eight sign combinations is tried, a 1 is
entered into a particular digit of an 8-bit fixed point
binary number if D, is found to be negative. Thus
a number is synthesized within the machine which
indicates which primitive statements may be made;
this number is termed the working list and is denoted
by W.
For example,

= {loBy)
= {alBy)
= {Blyoy
= (Yl
< (aBly)
S {yxlf)

— {Byla)
o Lapyl)

W=

implies the five primitive statements having 1’s below
them.
We also establish a check list, denoted C, which

* This condition is due to Kitaigorodski, see Discussion

§ (i).

COmOO O—OO © O0O M M ~oom (fyla)

Specification for {|«)
Specification for (|8)
Specification for |y )
Specification for {|(afy))

‘Working list
Check list, initial value

Sx? Yes .. {Ja)

L]

C’, = C? No .. statement new, print
07 No . . digest not complete

Sg? No .. {|B) not proved

Specification for {jaf)
Sap? Yes .o, {af)

imon

i

C’, = C? Yes ... statement not new, do not print

Specification for {|fy)
S? Yes ... {I8y)

Il

C’, = C? No ... statement new, print
0? Yes ... digest complete

i

OO0 HFHOO © O=ro o ©ooo (&fy])

initially has a 1 in each of the eight positions. As
each digest statement is formed zeros are planted in
C in positions corresponding to the primitive state-
ments contained in the statement formed, so that when
the digest is complete W+C=—1 modulo 256 (z.e.
W+C has a 1 in every place). The procedure is
illustrated in Table 1 in which the first four lines
represent the specifications for the four statements
shown; these are fixed point numbers and form part
of the programme. The next two lines indicate starting
conditions, and on the seventh line we collate W
with the specification for {|«), (i.e. form a number
having a 1 wherever W and 8, have a 1, hence the
symbol &). This is achieved with a single machine
instruction on many computers. Now in this example
W contains S, ... W & 8,=8,, if any digit in S,
were missing in W this would not be so; thus testing
the equality of (W & 8,) with S, is equivalent to
testing for (j«). Next we form (—1—8) (modulo 256),
S being the specification currently being considered.
This number has a zero in the position corresponding
to each of the primitive statements contained in {|«),
and 1’s elsewhere. This is then collated with C to
form a new check list C'; this new check list is com-
pared with C and found to be different, 7.e. some
primitive statements not previously accounted for
are accounted for by (J«); {J«) is therefore a new
statement, not included in anything foregoing. {|«) is
therefore printed and €’ replaces C (becomes C).
Next we form the quantity W+C+1 and find it
differs from zero; thus there is a digit or digits in W
not yet accounted for and checked off in C; in this
case the statement {(x|fy) remains.

On finding W+ C+1+0 the programme continues
to cycle through the four given specifications, treating
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each in the same way. W & S; is the next to be formed,
and this is found unequal to S;; therefore the state-
ment {|#> may not be made. Similarly with (|} and
(e By))-

When these four possibilities are exhausted the
programme enters a double loop, so that it takes
the four given specifications in pairs beginning with
o and 8. These two specifications are collated to form
8,5, the intersection of S, and S; being the specifica-
tion for {(|xf). The remaining steps are the same,
8,5 being used as the current value of S, and this
time we find that the statement {|xf) may be made,
but that ¢’=0C, so that {|xf) contains nothing new
and is therefore not printed.

Eventually the cycle reaches S;, and finds that
{|By) is true and new and prints it, and this time
(=1—8) & C yields the complement of W and the
digest is therefore complete.

Note that {|xfy) is contained twice in the digest,
the digest being inexact, but the process is quite
unaffected by the fact that this statement is checked
off twice and the others only once. The programme
may be entered at the double loop if W contains less
than four digits, and a triple loop may be used to
provide for the leading statement occurring alone.
In practice this has been carried out on a machine

ORDER INEQUALITIES

using ten digit numbers; the only difference this
makes is that C is initially —1 modulo 1024 and the
spare digits in W and 8 are set to zero. The spare
digits then have no effect on the process.

The doubly symmetrical case

The foregoing is principally concerned with the general
fourth-order case in which three indices h;, h; and h;
are independently chosen. If the choice is made such
that h;+h;=h; then special properties appear and
the determinant takes the form (2). In this case
evidently

& = $80;j55iSi0

ﬁ' = S0kSkiSi0c = SoxS;j0Si0

Y = SoxSkjSjo = SoxSioSjo = ﬁ
(zxﬁy) = 8iSkiSk; = 878080 = &

(centrosymmetric case).

It follows that we are not entitled to insert g and y
into the expression for Ds with opposite signs, so
that the statements {(xfly), (ap|f), (Biy») and
{y|«B) may never be made in this case even if testing
for these leads to a negative value of (5). Furthermore,
since f is always equal to v and only those statements

Table 2. The application of inequalities to a one-dimensional problem*

3rd order
with 4th order
Sign ‘sum and un-
h |U| symbol 3rd order difference’ conditional
1 0-177 a a a a
2 0-073 b b -
3 0-088 c
4 0-240 d d d
5 0-068 e € e
6 0-363 f f ae ae
7 0-116 g be —e
8 0-320 h h h —ae
9 0-680 % 7 abh e
10 0-338 7 al bh ae
11 0-137 k bdeh ad
12 0-198 !
13 0-178 m
14 0-146 n
15 0-775 [ fe beh a
16 0-370 » aft abeh +
17 0-395 q afh eh —a
18 0-240 r + + +
19 0-036 s
20 0-060 t
21 0098 u
22 0-031 v
23 0-246 w —e —e
24 0-623 2 f ae ae
25 0-745 Yy af e [
26 0-068 z
Number of signs involved 11 17 17
Number of independent signs 4 5 3
Number of possibilities 8 16 4

4th order conditional Correct
solution
a a a a a a {In{aez)(dz) )
(—a) c a {I(ac)(cel) )
d (+) (=) d d -
a e —a (@) (—a) —a {(ae)|(cel))
-+ ae — + - -
—a —e a —a a a {lac))
- —ae + - 4+ +
a e —a a —a —a {J{cev)(ac))
+ ae — + - -
ad a —a ad ad —a {(em)Id)
— - ac d -
a a {Id(am) )
a a a a a a {d|(as) )
+ + + + +
- —-a -—-a —a —a —a {dl(eu))
+ o+ o+ o+ o+ +
a a {(mu)(dl).(elm))
e a ((dl)(ae) )
—a —e . a —a a a
+ ae — + - -
a e —a a —a —a
+
20 19 19 19 18
2 2 1 3 2
2 2 1 4 2

* Note added in proof. This hand-drawn table has since been checked by computer, use being made of the techniques de-
scribed in the Discussion § (iv), and it has been found that the statement {|d(am) ), though true, was not proved and was
made in error. However, the additional statements (I|(ex)) and {(aez)|(dz)) may also be proved.
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containing g and y in the same partition can arise,
it follows that v may be ignored altogether, ¢.e.

(opyy = lof)

and we have in effect only four primitive statements
in this case. These are (| f), {(x|B), {Blx) and {af|).
The simplest (if not the most efficient) way to deal
with this situation in the digestion programme is to
suppress the unwanted digits in S and W by collation
with 11000011. By this procedure both the general
and this special case can be handled by the same
programme.

This special case is superior to the general case in
that a statement with [=1 results from only two
primitive statements. Thus {|x) may be proved in
this case where the general case may fail even if the
u values are the same in both cases.

An example

The principles outlined in this paper have been
applied to a synthetic one-dimensional problem which
was created originally by Sayre (1952) for the purpose
of testing his sign determining equation. The problem
corresponds to a centrosymmetric structure containing
eight equal atoms in a unit cell of 20 A dimension,
and the given data reach to the Cu Kx limit. The
results of this trial are shown in Table 2 where the
sign of each U is denoted by a letter. When the
third-order inequalities are applied exhaustively seven
statements of the type {|a) may be made, sufficient
to eliminate the seven sign symbols j,0,,¢,7, 2%, ¥.
At this stage eleven signs are inter-related, only four
of which are independent.

In the next column we include the results of the
application of fourth-order inequalities in which
h;+h;=hg, so far as these result in statements of
length one. At this stage 17 signs are inter-related,
five of which are independent, and this situation
represents the limit that may be reached by the
application of conventional inequalities. The next
column embodies all the statements of length one
obtainable from the fourth-order inequalities; no
further signs are involved, but the 17 are now ex-
pressible in terms of only three independent signs,
and the entries in this column are unconditionally
true.

There then remain eleven statements of lengths two
or three which are written alongside the table in terms
of the sign symbols remaining. These statements can
only be used conditionally, and in the next five
columns the bracketed signs have been chosen arbi-
trarily as a matter of trial and error. For example,
if d is supposed negative, then on the basis of the
seventh statement listed, the product (em) must be
positive, or m =a. Furthermore, by the sixth statement
the product (em) is negative, hence e=—a, and by
the last statement {=d= —. Thus nineteen signs are
now known on the basis of one supposition, the sign
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of a being immaterial. The correct solution is shown
in the last column for comparison.

Discussion

In this discussion we comment on six features of the
problem: (i) the extent of the information provided
by the approach, (ii) the build-up of information
from determinants of various orders, (iii) the capacity
of the machine digestion process to deal with all
situations which may arise, (iv) the utilization of
information arising from different determinants, <.e.
non-associated statements, (v) crystallographic sym-
metry, and (vi) the effects of experimental errors.

(i) The extent of the information provided by the approach

The results given in Table 2 have already shown
what is generally true that the information derivable
from fourth-order inequalities exceeds that available
from conventional inequalities. The gain may seem
marginal, but this is only because the territory of
fourth-order inequalities is not virgin ground, and
one might expect the gain of fifth-order inequalities
over fourth-order to be comparable with the gain of
fourth over third.

The writer has not made any statistical study of
the amount of information that one may expect to
arise when inequalities of order = are applied to a
structure containing N atoms. Kitaigorodski (1957),
however, has studied this problem in the simplified
case in which all the « values appearing in a deter-
minant are assumed equal; he then calculated D» as
a function of this single variable and the signs of the
primary tri-products. He showed that unless

u>1l/n—1)=¢

all combinations of signs will satisfy D, > 0, and he
terms & the ‘boundary’ for inequalities of order =.
Evidently, in a real case in which several different
u values occur, at least one must exceed & if the
leading statement is to arise.

This gives the appearance that as n increases the
amount of information obtainable will increase as &
decreases. As a matter of experience this is so, but
one should not take & to be a simple measure of the
strength of an inequality because an inequality with
a low boundary must yield more primitive statements
than need one with a higher boundary in order to
provide the same information. For example, third-
order inequalities have boundary } and one statement
from such an inequality proves a sign product positive;
fourth-order inequalities have boundary } but must
yield four primitive statements to prove a sign
product positive. Kitaigorodski also shows that for
this simplified problem the value of  that must be
exceeded in order to prove all the primary tri-products
positive also decreases as n increases, but is a com-
paratively slowly varying function of n. He also
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develops these ideas to the conclusion that inequalities
alone should be capable of solving structures for which
Va2 > ~0-10 to 0-15.

In this paper we comment on the experience
gained with the example already given. The problem
is clearly too small to enable one to draw precise
conclusions concerning the strength of the method
when applied to a crystallographic problem, but the
behaviour of the method was as follows.

There are 169 distinet connecting determinants of
order 3 which may be set up; of these seven yielded
statements of length 1. There are 1378 distinct
connecting determinants of order 4, of which 270
produced at least one primitive statement, a total of
nearly 900 primitive statements being obtained. Many
of the non-primitive statements so produced were
repetitive; for example, the statement {|(azy)) was
proved by 25 different fourth-order inequalities,
in fact by every one which contains

1 UuQl) U(@25) |
vl 1 U(24)
U@s) U@H 1

as a minor. Every statement arising from the third
order was obtained again from the fourth order.
The trailing statement, which is required to prove a
tri-product negative, occurred only once and yielded
{(awz)|). Significantly, this arose from a determinant
having h;+h;=h;. No contradictions arose.

(i1) The build-up of information from determinants of

various orders

We have already seen that fourth-order inequalities
regenerate information obtainable from the third-
order level, and we now enquire whether inequalities
of order » necessarily regenerate all the information
obtainable from inequalities of order m <.

In general

A1A:—BB _ A4,4,—|BJ?
c - c

OS.Dn,=

in which 4, is a connecting determinant (a minor of D)
of order (n—1) obtainable from D, by deleting the
tth row and the ¢th column. A; is similarly obtained
by deleting the jth row and jth column, B is obtained
from D by deleting the ith row and jth column,
and B is the complex conjugate of B obtained by
deleting the jth row and ¢th column. C is obtained
from D, by deleting the ith and jth rows and columns,
being of order (n—2) (Muir & Metzler, 1960, § 149,
p. 134). The correct set of signs must then satisfy
the four requirements

Dp>0, A1 >0, 42>0, C>0.

Evidently it is possible for a wrong set of signs to
satisfy the first requirement by failing simultaneously

FOURTH AND HIGHER ORDER INEQUALITIES

to meet two of the remaining three requirements,
i.e. tests of inequalities of orders (n—1) and (n—2)
would yield information in such circumstances which
the inequality of order n would fail to provide. If,
however, a trial set of signs is known to satisfy the
inequalities of orders (n—1) and (n—2) then the
requirement D, > 0 takes the form

A A > |B|2

which is clearly stronger than A4; >0 and 4: > 0.
Thus an inequality of order n adds to, but does not
necessarily reproduce, the whole of the information
obtainable from inequalities comprising its principal
minors.

Taken collectively, however, the picture is rather
different. We consider the case n=4 (all sign com-
binations then satisfy C' = 0) and consider all D4 for
which h; and h; are constant and hy varies from one
to another. 4; then depends only on « and is common
to all these inequalities, A2 depends only on (xfy)
and varies from one to another.* Suppose that 4; is
capable of proving ([x) then Ds will also prove it
unless at least one of the four combinations of § and y
with o« negative makes A: sufficiently negative to
satisfy 4142 > |Bj2. While this appears possible in
any one instance it is virtually certain that it will not
happen in every instance, ¢.e. for every hx. Thus
collectively fourth-order inequalities may be relied on
to reproduce all the information available from the
third order although individually they may not.

For orders greater than four this appears to remain
true, although the argument is complicated by the
fact that a wrong sign combination may give C <0.

(iii) The capacity of the machine digestion process to deal

with all sttuations which may arise

None of the specifications used in the machine
digestion process has a 1 in the position corresponding
to the trailing statement {xfy|). Therefore, if this
statement should arise the process will fail as the
digest could never be completed. There appear to be
two ways in which this deficiency may be made up;
both involve applying the method as it stands to
completion and entering an extension of the digestion
programme when it is found that the digest produced
is still incomplete. These two extensions may be
modelled as follows:

(@) The four specifications are replaced by their
complements, whereupon they become specifications
for the converse statements, and the programme is
then re-entered, ¢.e. S,=10110010 is replaced by
01001101, the specification for {«|), efc.

(b) The extension uses specifications for the three
statements {(8y)|>, {(y«)|)> and {(xp)]) (3.e. 11000011,

* The first and last rows and columns of D, have here
been selected for deletion.
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2 (2]67)

d (apl)

(aby))
@

637

Fig. 2. Two special cases. For explanation, see text.

10100101 and 10011001%*) and is otherwise similarly
constructed.

(b) is thought to be superior to (a) as we may see
on general grounds. By considering equation (5) in
which each tri-product is multiplied by a positive
numerical part and prefaced by a + sign we see that
these may be demonstrably positive. The tetra-
products are also multiplied by positive numerical
parts and prefaced by — signs, so that we might
expect to be able occasionally to prove a tetra-product
negative; it therefore seems more sensible to search
for negative tetra-products (scheme (b)) than negative
tri-products (scheme (a)).

To compare these further we suppose that the
situation is such that the statement {«|) may be
proved (in which case scheme (a) would appear
preferable to (b)), then the situation is represented
diagrammatically in Fig. 2(a) in which the five
primitive statements which must then have occurred
are marked with solid circles, the heavily outlined
face being the («|) face. Algebraical studies have
shown that if these five statements arise then it is
likely that at least one of the remaining statements
will also arise, although attempts to prove that this
must happen have not so far been successful. If one
of these does also arise then there are two conse-
quences, (i) one of the three diagonal planes linking
{JaBy) and {xfy|) will be completed, i.e. one of the
statements {(8y)!), {(yx)|) or {(«f)|) can be made,
and (ii) either one of the faces (for (|8) and (|y})
or the tetrahedron (for {|(xfy))) will also be com-

* These specifications may be derived from Sy, Sg and S,
by means of the non-equivalence function (see § (iv)). The
specification for a statement involving a product such as
(o)) is given by S« = (S« = Sp), and the specification
for {(xf)|), written (458, is the complement of this. Similarly
Stapy)=(Sx = Sp == S).

pleted, i.e. in such a case the digest need not ex-
plicitly contain {x|)» but could be expressed in a form
such as {IB>.{(«f)]) in which case scheme (b) would
serve as well as (@), the latter having lost its apparent
advantage.

In the rare (if not impossible) event of a sixth
primitive statement failing to arise, the process would
still function but would fail to include a statement
of length 1 in the digest, so that the fact that an
unconditional statement could be made would be
masked.

Another difficult circumstance is illustrated in
Fig. 2(b). Again five primitive statements are sup-
posed to have arisen, of which the four situated
on the indicated diagonal plane are sufficient to yield
{|(yx)y. The machine digestion procedure outlined
above would render this as

oy By -Lax(axfy)y . y(xfy))

and again the unconditional statement would be
obscured. However, if these five statements occur it
appears likely (if not certain) that one of the remaining
primitive statements (not {«fvy|») will also occur;
in which case we have the situation that ([(y«)) can
only be proved in circumstances such that {|y) and
{Jocy or (|B) and {|(xfy)) may be proved, which
the existing procedure can handle.

The whole question of the occurrence of these rare
and difficult combinations and the technique for
handling them should they arise is continually under
review.

(iv) The utilization of information arising from different
determinants
The foregoing has been principally concerned with
the digestion of associated primitive statements. In
this paragraph we outline a scheme which is cur-
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rently under development for the systematic applica-
tion of the results to the individual signs s;;. For this
purpose we utilize the ‘non-equivalence’ function
which is a feature of many computers, as it enables
us to perform algebraical operations on signs and sign
products.

Initially we allocate a sign symbol to each sign as
in Table 2 and represent these in the machine according
to the following scheme,

+ = 0000...0000
— = 1000...0000
a = 0100...0000
b = 0010...0000
w = 0000...1000
x = 0000...0100
y = 0000...0010
z = 0000...0001

the length of each ‘word’ being one greater than the
number of independent signs to be determined, the
first digit having the significance —, the second a, etc.
The product of any number of such signs is then
obtained using the non-equivalence order which takes
two such ‘words’ as factors and places a zero in the
result wherever the factors have the same digit,
and a one wherever they differ. This is binary addition
without carry.

Suppose a determinant yields (|x) with &= (azy)
then we form the sign symbol for « (using the non-
equivalence order twice) and obtain

«=0100...0110= + .

Since « is positive we may multiply any sign symbol
by « and use this to eliminate one such symbol.
We choose the highest in « for elimination—this
is y, and then multiply any sign symbol containing
y by «
y¥=0000...0010
x=axy=0100...0110
product =new y=0100...0100=qax,

thus y is replaced by ax. If then it is proved that the
product (awz) is negative, so that

(—awx)=1100...1100= +

we may use this to eliminate z, thus

x=0000...0100
—awx=1100...1100

product =new z=1100...1000= — aw
y=0100...0100
—awxr=1100...1100

product =new y=1000...1000= —w .

Thus a record may be kept in the machine equivalent
to Table 2.

FOURTH AND HIGHER ORDER INEQUALITIES

The same technique may also be used to test for
relationships which may exist between «, f and 3
before the values of D, are calculated. For example,
in the special case having h;+h;=h; the product (8y)
may, by this means, be found to be positive at the
outset, and could be used as the cue to apply the
special procedure already described in this connection.
This is probably the best way of handling this and
other special cases, despite the fact that it may seem
simpler to test for the relationship h;+h;=h;, because
the identity f=y may arise in two ways, either
(i) because of such a vector relationship between
the indices or (ii) because other inequalities previously
employed have already established the fact,* and the
second case will only be revealed by the use of this
‘non-equivalence’ technique.

(v) Crystallographic symmetry

It is well known that relationships among structure
factors arising from space group symmetry, when
allied to inequality relationships, yield inequalities
of special form and utility characteristic of the space
group involved. However, the approach being adopted
is to utilize such crystallographic information at the
outset by assigning sign symbols embodying such
constraints. Equal structure factors may be given the
same sign symbol, those which are equal but opposite
in sign being given sign symbols which differ only
in the first digit. All general inequalities then become
special to the space group concerned and the proce-
dures outlined in (iv) above take full account of such
symmetry. Further, the special forms given by Goed-
koop (1950) and MacGillavry (1950) including crystal-
lographic symmetry occur spontaneously when ap-
propriate values of h are chosen.

(vi) The effects of experimental errors

Erratic experimental data may cause trouble either
by failing to produce statements which it ought to
be possible to make, or by producing statements which
it ought not to be possible to make. The second type
of fault is much more serious as it may lead to contra-
dictions. The question of the accuracy required in
the data for the successful application of inequality
methods has not yet been studied, though it is pretty
clear that the requirements become more stringent
as the order of inequality increases. Neither has the
practical problem of dealing with inaccurate data been
studied although three approaches to this question
are in mind.

Firstly, since all inequalities depend on the con-
straint ¢ > 0 any apparent malfunction of the method
must arise from the fact that the given (erratic) set
of data gives regions of negative electron density even

* In this case the determinant would not necessarily be
symmetrical about both diagonals, but it would call for the
same treatment as those which are.
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with the correct set of signs.* Such negative regions
may be eliminated by adding a constant to g, d.e.
adding a constant to F(000) and renormalizing. This
provides a general slackening of the constraints which
must remove any contradictions which may arise, but
at the expense of failing to obtain some correct
information that it ought to be possible to obtain
with good data.

The second approach is to note with what frequency
a given statement arises. It has already been pointed
out that a number of different determinants may
yield the same result, and if a particular sign product
is proved positive many times and negative only a
few then it would seem reasonable to accept it as
positive. This approach would greatly complicate the
machine programme, but it is a possibility.

The third possibility involves attaching a weight
or credence to each statement derived from the value
of D. Thus a statement arising from a determinant
which is strongly negative would be given more
credence than one rising from a determinant which
is close to zero. In this way the true statement in a
contradictory pair may be recognized by its greater
weight. This again would greatly complicate the
procedure and is regarded as a last resort.

From the practical standpoint it may turn out that
the method requires data produced by counters or
possibly photometry rather than eye-estimation.

APPENDIX

In this Appendix we show that the fourth order
inequality having h;+h;=hy is equivalent to the pair
of sum and difference inequalities. We have

0<D=
1 U(hy) U(hy) U(h;+hy)
U(hy) 1 U(hj—hy)  U(hy)
U(l_‘l;) 3 U(Pi"—hj) 1 B U(h;)
U(h;+hy) U(hy) U(hy) 1
which for brevity we write as
0<D=
‘1 a b ¢ 1 abdl a b c|? 2 Re
'aldb_ald—ldbsAdlz
bdla ~[badl i1 a 1-
cbal), 1 d
B

(Muir & Metzler, 1960, § 149, p. 134), 4 and B
representing the two third order determinants, i.e.

* Series termination effects may cause the transform of
the U’s to contain negative regions with the correct set of
signs, but provided that u values lying outside the limiting
sphere are not employed (treated as zero) in the inequalities
this type of negativity in ¢ will do no harm.
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0 S<A+B>(A-—B) .
1-d/\1+4d

Now the denominators are both positive, so that
the quantities (4+B) and (4—B) must have the
same sign. But A is itself a third-order connecting
determinant, and must be positive, therefore of the
quantities (4 + B) and (4 — B) at least one is positive,
therefore both are positive, i.e.

A+B
(=7)=0

A—-B
(‘m)z"-

and

Expanding, we find

A = 142abd—a%—b2—d?
B = a2d 4+ b2d +c—2ab—cd?

A+ B = 2abd—2ab—a?+a2d—b2+b2d+1—d?+c—cd?
= (l—d)[—2ab—a2—b2+ (1 +d)(1+c)]
A+ B

Tz = [—(@+b2+(1+d)(1+4¢)] =0

ie. [U(h)+U(hy)]2 < (14 U(hy—hy)][1+ U(hy+hy)].
Likewise

A—-B
— — >0 yield
1+d — yIeles

[U(hy)—U(hy)P? < [1=U(hy;—h)][1-U(h;+hy)].

I am pleased to acknowledge my indebtedness to
Prof. H. Lipson, F.R.S., for his encouragement in
this work, and to Dr M.M. Woolfson for many
helpful discussions and for reading the manuscript.
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