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Am approach is made to the problems which arise in the application of inequalities of order four 
or more. The main features of the fourth-order case are examined in a way which lends itself to 
extension to orders exceeding four, and an example is given of the application of fourth-order 
inequalities to a small problem. 

Introduct ion and notat ion 

Karle & Hauptman (1950) showed that  the necessary 
and sufficient condition that  the electron density be 
nowhere negative is that  all determinants of the form 

F(o) F(hd  2"(h~) . . .  F(hn-1) 
F(h~) F(o) 2"(hj-  h~) . . .  2"(h,~-~- h~) 
F(ha) F ( h , -  ha) F(o) . . .  F (hn-1 -  ha) 

• . . . 

F(hn-1) F (h , -hn -1 )  F(ha-hn-~)  . . .  2'(0) 
(1 

shall be positive or zero. (Here hi is any vector index 
and h~ its inverse). These writers also showed that  
all possible inequalities based upon the positivity of 
e are contained in these determinantal inequalities. 
As is well known, U may replace 2" in these deter- 
minants since the U's also have a positive transform, 
and this results in a strengthening of the inequalities. 
Following Kitaigorodski (1957, 1961) we call such 
determinants containing U's 'connecting determi- 
nants'. 

Various writers, notably MacGillavry (1950) and 
Goedkoop (1950) have considered the systematic 
incorporation of crystallographic symmetry into such 
inequalities, whilst Bouman (1956) and Taguchi & 
Naya (1958) have shown that  connecting determi- 
nants can be expressed in more compact form if the 
crystal is centrosymmetric and if the choice of indices 
h is such as to make the determinant symmetrical 
about both diagonals. They show, for example, that  
under a linear transformation the inequality 

1 U(h) U(h') U(h+h ' )  
U(h) 1 U ( h ' - h )  U(h') 

>_0 
U(h') U ( h ' - h )  1 U(h) 

v(~+~') v@) v(~) 1 
(2) 

is equivalent to the two inequalities 

I [1_+ U(h+h ' ) ]  [U(h)+_ V(h')] > 0 (3) 
[U(h)_+ U(h')] [1 + U ( h ' - h ) ]  - 

recognizable as the 'sum and difference' inequalities 

in determinantal form• (This is also shown in the 
Appendix without the use of transformation ideas). 
In general a doubly symmetrical connecting deter- 
minant of order 2n (or 2n+ 1) is reducible to a pair 
of determinantal inequalities of order n (or one of 
order n and one of order n + l ) ,  each element of 
which contains two U's instead of one (except for 
1 row and 1 column of the larger determinant in the 
latter case). 

In recent years the direct approach to crystal- 
structure determination has most often been made 
through probability methods, inequalities being too 
weak to solve any but fairly simple structures• 
Kitaigorodski (1957, 1961), however, has provided 
some stimulus to the study of inequalities of higher 
orders and has clearly shown that  their strength 
increases as the order n of the determinant increases 
and should reach a strength comparable to the 
existing probability methods. These points are 
returned to in our discussion. 

Von Eller (1955, 1960, 1961, 1962) has also made 
an extensive study of these inequalities, making use 
of the geometrical relationships which arise among 
the angles ~ defined by ~ =arc  cos U. 

In the present paper we are concerned with the 
problems which arise in the application of inequalities 
of all orders by computer methods, with special 
attention to the fourth-order case, and with the 
objective of finding a unified approach. 

Since the unknown quantities to be found are the 
signs of the U's it is apparent that  the number of 
these which are involved in any given inequality is a 
more important criterion of the complexity of the 
inequality than is the order of the determinant 
employed• For this reason the compact form (3) has 
no advantage over the less compact form (2), and 
we formulate what follows in terms of the general 
form (1) treating (2) as a special case which is included 
in the general form. 

In this paper we write 

u*a = I U(hi - ha) l, s,a = U(h~ - ha)/[ U(h, - ha) l 
and define h0=O. Thus s,a is the complex conjugate 
of sa,, u,a=ua, and the connecting determinant of 
order n becomes 

A C 1 6 - -  41 



628 F O U R T H  AND H I G H E R  O R D E R  I N E Q U A L I T I E S  

1 S~oU~o 8 ~ o U I o  • . .  8 ( n - 1 ) O U ( n - 1 ) O  

So~Uo~ 1 81iU]i . . .  8 ( n - 1 ) i U ( n - 1 ) i  

So~Uo~ s,lu,~ 1 . . .  S(n-1)ju(n-1)~ 
: : : : 

80(n-1)?~O(n-1) 8,(n-1)Ui(n-1) 8~(n-1)Ui(n-l) . . .  1 

(4) 

in which it is convenient to regard the ( n - 1 )  off- 
diagonal elements on the top row or first column 
as being independently chosen, the remaining 
½(n -1 ) (n -2 )  elements each side of the leading 
diagonal being dependent upon this choice and being 
termed dependent elements. 

Now the expansion of a determinant of order n 
contains n! terms, each of which is the product of 
n elements together with the appropriate sign. The 
n elements which occur in any term are such that  no 
two are from the same row or the same column; 
thus in every term the subscript i occurs just once 
in the left-hand position and just once in the right- 
hand position. Thus the sum of the vector indices of 
the elements involved in any term is independent of h~. 
This is true for all i; it follows that  the sum of the 
vector indices of the elements involved in each and 
every term is zero, i.e. every term is a structure 
invariant.* 

Thus typical terms in the expansion of a fifth- 
order connecting determinant would have sign 

( -  1)Vso~s~gsg¢s~tsto or perhaps ( -  1)Vso~s~s~s~s~o 

which is (-1)vs0~s~s~s~0 

where p is the total number of inversions of order 
among the subscripts (Muir & iVfetzler, 1960, p. 14). 
Invar iant  products of signs such as these will be called 
tri-products, tetra-products, etc, according to the num- 
ber of non-trivial signs involved. Of such products 
the tri-product is the most useful since it is the 
simplest which is non-trivial and is already familiar 
in crystallography. A tri-product can be made up 

each pair of indices ij, such as so,si¢s¢o, or one for 
each dependent element. Furthermore, since ss~s,j = 1, 
any invariant sign product may be expressed as the 
product of a number of primary tri-products, as 
pointed out by Kitaigorodski, e.g. 

80iSikSIc~Sj lS lo  --~ 8 0 i 8 i k S k o . S o ~ S k j S j o . S o J S j l S ~ o  

s~ks~sj~szt = So~Si~Sko. So~S~S~o. So~S~S~o. So~S~S~o. 

For the purposes of evaluating the connecting 
determinant for a centrosymmetric structure we may 
regard each s~¢ as an independent variable having the 
values _+ 1, and therefore the primary tri-products 
may alternatively, and more conveniently, be regarded 
as independent variables. Since all invariant sign 
products may be expressed in terms of these it follows 
that  a connecting determinant of order n has 
2 ½(~-~)(n-2) possible values, of which the negative ones 
correspond to disallowed sign combinations. 

The remaining 

[ n, ] ( n - l ) ,  
3 l ( n - 3 ) l  ½ ( n - 1 ) ( n - 2 )  - 6 ( n _ 4 ) !  

tri-products, such as s~¢s¢~s~, will be termed secondary 
tri-products. Information concerning these is just as 
valuable for the purposes of sign determination as is 
information concerning the primary tri-products; 
however they have the role of dependent variables. 

If in (4) we multiply the ith row by s~0 and the 
ith column by s0~ then the value of the determinant 
is unchanged since it has been multiplied by S~oSo~. 
When all the rows and columns are so multiplied we 
have 

Dn 

1 u~o 

Uo~ 1 

~oJ  8ot8~jSjoUii  
: 

~/~0(n-1) 8 0 ~ 8 ~ ( n - 1 ) S ( n - 1 ) o U i ( n - 1 )  

UJ0 • • • U(n-1)0 

80 jS j iS toUj i  • • • 8 0 ( n - 1 ) S ( n - 1 ) i S i O U ( n - l ~ i  

1 • • • S O ( n - 1 ) S ( n - 1 ) j S j O U ( n - 1 ) i  

: 

SoiSJ(n-1)S(n-l)oUJ(n-1) . . .  1 

from any three different indices, such as S~SjkSk~; 
thus n l / [ 3 l ( n - 3 ) ! ]  such tri-products may be formed 
for a determinant of order n. Tri-products which 
include the suffix zero will be called primary  tri- 
products as these have special importance in what 
follows. Clearly, there is one primary tri-product for 

* If  U(h)  becomes  U'  (h) when  the  crys ta l lographic  origin 
is shif ted b y  8 r  then  U ' ( h ) =  U ( h ) e x p  [ 2 n i S r . h ]  

.'. I / U ' ( h ) = e x p  [ 2 ~ i S r . ~ h ] / - / U ( h )  

which  is i ndependen t  of the  choice of origin if 2 : h = 0 .  

in which the only sign products appearing are the 
½(n-1 ) (n -2 )  primary tri-products which will hence- 
forth be identified according to the scheme 

7 ~ 0 
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in which the dots represent  the independent  and  
diagonal  elements,  e.g. a=so¢s~w~o, and  ~ is the  
complex conjugate of a.  I n  wha t  follows we shall 
be concerned only with  cent rosymmetr ie  s tructures,  
however,  so t h a t  this dist inction m a y  be ignored. 

The ma jo r i ty  of these features  have  a l ready  been 
pointed out  by  Ki ta igorodski  (1957) bu t  i t  should 
also be emphasized t h a t  the  dist inction d rawn here 
between p r imary  and  secondary t r i -products  is a 
m a t t e r  of choice (their roles m a y  be in terchanged 
by  permut ing  rows and  columns in Dn), the  point  
being t h a t  only ½ ( n - 1 ) ( n - 2 )  of the  t r i -products  are 
independent  and  one mus t  therefore choose which 
ones to regard  as independent  variables.  Algebraically,  
we mus t  expect  all t r i -products  to have  equivalent  
s ta tus  and  this is apparen t  in any  expansion of D . .  

P r e l i m i n a r i e s  f or  t h e  f o u r t h - o r d e r  c a s e  

The four th-order  connecting de te rminan t  m a y  be 
expanded  as 

1 SioUio S j o U j o  SkoU~o 
0 <_ D4 : 8oiUoi 1 sj~uj~ s~iu~ 

80JU0i 8ijUil 1 8klUl¢1 

80kUolc 8ikUik 8]kUJk 1 

2 
= 1 - ~ o  - Uj~o - ~ o  - uj5 - u ~ , -  u~j 

2 2 2 2 2 2 -b u]iUko -k ukiUjo -t- ukjUio 
+ 2{aUojUj~Uio + fluoku~tuio + yuo~u~u~o 

+ (afl~,)u~u~u~ 

- ( f l ~ ) u o ~ u ~ u ~ u j o - ( y ~ ) u o ~ u ~ u ~ u ~ o  

- (~)uo~u~u~u~o } (5) 
in which the product  of two p r imary  t r i -products  is 
a t e t ra -produc t  and the product  (c~fl),) is the  sec- 
ondary  t r i -product .  The symbols a, 8, etc, will a lways 
be enclosed in round brackets  when their  product  is 
intended.  

Suppose we set c¢ = + ,  /6 =~, = -  and calculate D4 
and  find it negative,  we m a y  then  make  a statement, 
wri t ten  <a[fly>, which says 

' I f  c¢ is + and/6 and ~ - then  we get a violation' .  

I n  this form the s t a t emen t  tells us wha t  must  not be. 
All remaining possibilities consti tute wha t  m a y  be. 
However ,  we wish to find wha t  must  be and  from the 
outset  we phrase the  s t a t emen t  positively, thus  

or 
' I f  a is + then  a t  least  one of/6 and 9¢ is + '  

' I f  fl and ~ are - then  a is - '  

or in general  

' If  every item on the  left  is + 
then  a t  least  one i tem on the r ight  is + '  

or 

' I f  every i tem on the  r ight  is - 
then  a t  least  one i tem on the left  is - '  

in which an  i tem is any  invar ian t  sign product  
(of whatever  order), which appears  in such a state-  
ment .*  

Such a s t a t emen t  arising from a single tes t  of Dn 
will be called a primit ive statement. Eviden t ly  pr imit ive 
s ta tements  are a lways  conditional (except for n = 3 )  
and m a y  be read  in a va r i e ty  of ways ;  any  i tem m a y  
be t ransposed wi th  change of sign, thus  

so t h a t  any  combinat ion of i tems m a y  be brought  
into the 'if '  par t ,  the  remainder  appear ing  in the  
' then '  pa r t  of the  s ta tement .  S ta tements  arising from 
a single de te rminan t  (i.e. a single choice for h~, hj, h~ 
etc) will be t e rmed  associated statements. There are 
eight pr imit ive associated s t a t ements  for the  fourth-  
order case corresponding to the  eight values of D4: 

of which the  f irs t  will be t e rmed  the  leading statement 
and  the  las t  the  trailing statement. 

Examina t ion  of (5) shows t h a t  D4 is smallest  when 
=/6 = ~  = - ; therefore none of these s t a t ements  can 

occur in the  absence of the  leading s t a t emen t  (this 
is general for all  n). Fur the r ,  t hey  cannot  all arise a t  
once since no possible sign combinat ion would then  
remain.  These appear  to be the  sole constraints ,  so 
t h a t  2 7 - 1  = 127 combinations of pr imit ive associated 
s ta tements  are possible for n = 4 .  

Final ly  we define the  length,  l, of a s t a t ement  as 
the  number  of i tems appear ing in it. 

I t  is now our objective to show, in as general  a 
way  as possible, how to reduce any  combinat ion of 
pr imit ive  associated s ta tements  to its most  concise 
form, and  especially to derive s ta tements  of length 1 
which are uncondit ional .  

D i g e s t i o n  o f  a s s o c i a t e d  s t a t e m e n t s  

I. The digest regarded as the union of primit ive 
statements 

We define the  digest of any  given s ta tements  as 
the shortest  s t a t emen t  or s ta tements  which together  
completely contain the  given s ta tements .  We consider 
f irst  a pair  of s ta tements  which differ only in respect  
of a single i tem which occurs on opposite sides of the  
given s ta tements ,  e.g. 

which m a y  arise from a f i f th-order  inequali ty.  I f  we 
rear range  these s ta tements  so t h a t  the  unique i tem, 
y, appears  alone on the  left,  then  t hey  read  

* If the 'if' part of a statement contains no item it is 
to be read as 'in any ease . . . ' ,  e.g. <latin') means 'in any 
case at least one of c~, ~, ~, is positive, <a]~] > means 'at least 
one is negative'. 
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( r l ( -  ~ ) ( -  f ) ~ >  and ( ( -  ~)1(- ~ ) ( - / ~ ) 6 ~ ) ;  

thus whatever the sign of y, at least one of the items 
on the right must be + ,  and the union, or digest, 
of the given statements is 

( [ ( -c¢) ( - f ) (~s~> usually written (af[(~s~>. 

This illustrates the principal rule for the combina- 
tion of statements, which will be called the cross-over 
rule, that  if two statements differ in this way then 
the digest is obtained from either statement by 
deleting the item which crosses over, and the digest 
is complete in the sense that  it completely contains 
the t ruth of the given statements. 

In  order to broaden the applicabili ty of the cross- 
over rule we consider next the equivalence rule. It  has 
already been pointed out that  by transposing and 
changing the sign of an item any combination of items 
may be brought into the left-hand part of the state- 
ment, which may be regarded as the 'if' part, so that  
any statement containing two or more items may be 
arranged to contain two items in the 'if' part. Suppose 
the 'if' part  of a statement says 'If a and f are 
positive . . . ' ,  then it is already known that  (~f)  is 
positive also, and of the three items a, fl and (aft) 
any two will do to specify the condition. This leads 
to the general formulation of the equivalence rule as 
follows : 

'Any i tem in a statement may be replaced by the 
product of itself with any second item in the state- 
ment, the product being transposed to the opposite 
parti t ion if the second i tem occurs in the right-hand 
partition, and is not transposed if the second item 
occurs in the left-hand one'. 

For example c~ may be replaced by ( ~ )  in the 
following 

(1~#~) = ((~#)I#~) 

and (aft) may again be replaced 

( ( ~ # ) 1 # ~ )  - ( l ( ~ # r ) f r ) ;  
or again 

(~l#r> -- (~ l ( a f ) r> .  

Now consider any two statements containing the 
same items, for example <afllTde~> and <aTdeli3~> 
in which the items which cross over are in bold 
type, and replace the first bold-faced item in the 
first statement by its product with the second, 
the second by its product with the third, and so on, 
and treat the second statement in the corresponding 
way, thus 

(aflll 'de$> - (al(fy)yde~> 
-- <~ (~6 ) l (~ )de~ ) -  <~(~'~)(D~)l(~)e~> 

and 

- (c~(~,6)del(#y)$> = (a(~,~)(6e)el(f~)$> 

then the two given statements have been converted 

to equivalent forms containing the same items, only 
one of which crosses over, so that  the cross-over rule 
may be applied. Thus 

where D denotes 'implies that ' .  
The process is evidently general; thus any two 

statements of length 1 containing the same items may  
be united to form a single statement of length l - 1  
which completely contains the given statements, and 
it follows from this that  any statement of length 1 
may be regarded as containing 2a0-0 statements of 
length l0 > 1. However, if more than two items cross 
over in the given statements then there is more than  
one way of expressing the digest, depending on the 
order in which the crossing items are replaced by 
products. 

There is one further aspect of the problem which 
must be considered before the rules may be applied 
indiscriminately and this is the question of com- 
pleteness. In the examples so far given, two statements 
have been reduced to one which completely contains 
the t ruth of the given statements, which may then be 
discarded, the digest statement alone being retained. 
Such digests are said to be complete. In the example 

(a ,# ) .  (# I t )  = ( a i r )  

the statement on the right follows from the given 
statements* but it does not completely contain them; 
it states that  'if c~ is + then y is + ' ,  which is true, 
but the information that  f is also + is lost if (a[),} 
is the only statement retained. The simplest approach 
to this problem is to enquire how many primitive 
associated statements are represented by the given 
statements and by the digest and to say that  the 
latter shall not be less than the former, and if it is, 
then the shortest of the given statements must also 
be retained to make the digest complete, i.e. 

X 2(lp-lg) <_ X2 (lp-ld) (6) 

in which the lg are the lengths of the various given 
statements, l~ the lengths of the digest statements, 
and lv the length of the primitive statements. If the 
equality in (6) is satisfied then the digest is said to 
be exact; if not then it is inexact in the sense that  
one or more of the primitive statements is contained 
more than once in the digest. In the following ex- 
amples the statements on the left are given statements 
and the bold-faced statements are the ones required 
to form a complete digest in each case 

( l~#~) . ( a l#~ )  = <lilT) (v) 

<1~7>. (nit3> = (lilT> (s) 

* This involves a simple extension of the cross-over rule, 
that when the given statements have one item which crosses 
over, this vanishes and each partition of the digest statement 
is the union of the corresponding partitions of the given 
statements. 
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(9) 

Of these (7) is an example of an exact digest, 
(8) is inexact in tha t  the primitive statement <0¢[fl7} 
is contained twice within the bold-faced statements,  
and (9) is a case where no advantage in conciseness 
is obtained from uniting the given statements,  two 
statements of length two being required however the 
result is expressed. 

Evident ly the left-hand side of (6) represents the 
number of primitive statements contained in the given 
statements provided tha t  the former are all different. 
We now question whether (6) provides a valid test  
for completeness if this is not so. Suppose we have 
any two statements of length la as given statements 
and suppose tha t  together they  may  be derived from 
three, not four, s tatements of length (/~+1), then we 

Thus any s tatement  of length 3 from (10) and any 
of length 3 from (11) represent a typical pair of 
statements having a common statement of length 4 
among their antecedents. Evident ly they  can be 
expressed so tha t  the items they have in common, 
(76) and (c~flT), both occur in the same part i t ion 
with only one remaining i tem in each case, c~ and 6, 
which are different, so tha t  there is no possibility of 
combining these statements further, except to form 
<~(~6)[(~#y)6> which is retrogressive, being equiv- 
alent to <~fl176>. 

The three rules so far described are sufficient for 
the digestion of any  combination of statements,  
and we conclude this section with some examples in 
which the primitive statements are listed one above 
the other, and bold face indicates the statements 
to be retained. 

(i) 
} <(aft)It> =- <l(aflT)7> } <l(aflT)a>, 
- <yl(~y)~> 

(ii) 

<,~,> 

(iii) 

(iv) 

<I(afl7)> (12) 

- <~#I(~')> 

} <I#7> - } 1 
= <(/~y)yl~} <l(afl7)> " (13) 

- <~l(t~y)> 

may show tha t  the two given statements cannot be 
united by the cross-over rule, so tha t  the question of 
testing the completeness of the result does not arise. 
We illustrate a general case. Let the three statements 
of length ( lg+l)  be <l~fly6>, <c~flly6} and <~y61fl> 
and let the second of these be common to both the 
statements of length lg, then 

<c~flly6> = <(afl)flly6} / = <(76)1(afl7)6 > (10) 

<c~flly6> = <aI(#y)y6} ] 
= <~(~,6)1(#y)6> / (~(y6)i(fl~,)> 

- <~(r6)6I(#r)> (11) 
in which = denotes application of the equivalence 
rule and } denotes union by the cross-over rule. 

In (i), as in other examples, we prefer to express 
the digest in terms of (~fly) rather than  in terms of 
products such as (aft), since the former is a secondary 
tri-product and the lat ter  a tetra-product.  

In (iv) the s tatement <t/~7) is retained because it 
must be retained (to satisfy (6)) at  the stage when 
the statement ((fiT)In) is obtained, and it is this lat ter  
s tatement which is then used further. 

Finally, we remark tha t  an alternative approach 
to the question of completeness does exist, and this 
is through the theory of information of Shannon 
(1948), according to which it  may be shown tha t  the 
information content of p statements of length l, 
containing the same items is given by 

l -  log2 (21 - p) bits 

on the assumption tha t  the a priori probabili ty of a 
s tatement of length 1 is ½. On this basis the informa- 
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tion contained in the five primitive statements given 
in (13) is 3 -1og23=1.415  bits; similarly that  con- 
tained in (l(c~Ey)) is 1 bit and tha t  in (1flY} 0-415 bits. 
Thus the digest is complete, but  the approach does 
not indicate tha t  the digest given in (13) is inexact, 
the statement <[~xE7 } being contained twice. How- 
ever, the relevance and implications of the theory of 
information have not yet  been throughly studied. 

II.  The digest regarded as the intersection of short 
statements 
In  this section we consider a second approach to 

the general problem of forming the digest of a list of 
primitive statements which is complementary to the 
first and which has the merit  of lending itself readily 
to machine computation. (Not all the features of this 
approach have yet  been fully worked out however; 
see Discussion, § (iii)). 

We consider the fourth-order case for which lp =3  
and consider the primitive statements which are 
required to produce the statements <IE) and ( l~) ;  
these are 

< IET> < IM> and <7 IE> for 

and 

These groups of primitive statements will be termed 
the specification for <IE} and ( I t }  respectively. Of 
these we note that  the first two statements are 
commo~ to both specifications, i.e. the intersection of 
the two specifications is < laEr} .<a lEy  ) and the 
digest of these is (IE~'}. This result is quite general, 
tha t  a s tatement of length l, (such as <IE?}), may 
be regarded as the intersection (of the specifications) 
of l statements of length 1, these lat ter  having the 
property tha t  their left-hand and right-hand parti- 

tions, when united (left with left and right with right), 
form the corresponding partitions of the longer state- 
ment. Fundamentally,  the reason for this is tha t  the 
specification for <IE}, written SZ, consists of a list 
of all those primitive statements which have fl on 
the right, S, is all those having ? on the right, whilst 
the specification for (]Ely} corresponds to all those 
statements having E and y on the right, and these 
must obviously be the intersection of SZ and S r. 

The relationship between this and the foregoing is 
most easily seen in terms of the diagram (Fig. l(a)) 
which represents a rhombohedron having the eight 
primitive statements at tached at  its vertices. Every 
pair of primitive statements which are related by  a 
single cross-over are then connected by edges of the 
rhombohedron; thus to every edge may be at tached 
a s tatement of length 2 which is the digest of the two 
primitive statements thereby connected, and similarly 
to every face may be attached a statement of length l, 
which is the digest of the four primitive statements at  
its corners. I t  is manifest tha t  any statement such as 
{ l?a} may be regarded as the union of the statements 
(I~Ey } and <El~a} which its edge colmects in the 
diagram, or as the intersection of the faces (In} and 
(1 X} which meet at  this edge. Similarly the s tatement  
(EIXa} occurs at  the intersection of the three faces 
<EIL (ly> and 

Fig. l(b) shows an extension of this in which the 
four statements comprising the specification for 
<](aE?)) (see (12) above) are joined to form a tetra- 
hedron. This tetrahedron intersects the ( l~ )  face along 
the diagonal connecting <lccET} and (Eyla}  whose 
digest is <l~(aflX)} , i.e. the statement formed by 
uniting corresponding partitions of ( I s  } and <l(a E r) }" 

Since every combination of primitive statements 
must include the leading statement,  and since all 
primitive statements (except the trailing one which is 

/ 4 %  face 

(~) (b) 

Fig. i, A geometrical analogue showing the relationship between the eight primitive statements of the fourth order ease, and 
various shorter  s ta tements .  The arrows ident i fy  the three faces of the rhombohedron  which are out l ined ent irely with full lines. 
For  fur ther  explanat ion,  see text .  
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A 

COL 

v 

S= = 1 
Sfl = 1 
S r = 1 
S(ccr) = 1 

W = 1 
C = 1 

W & S ~  = 1 
( - l - s )  = o 
( - - I - - S )  & C = 0 

W + C + I  = 0 

W & S f l  = 1 

so,# = $o, & Sfl = 1 
W & S  = 1 
( - i - s )  = o 
( - 1 - s ) & c  = o 

Sti r = S~ & S~, = 1 
W & S  = i 
( -  ~ - s )  = o 
( - ~ - s ) & c  = o 
W + C +  1 = o 

Table  1. A m a c h i n e  p r o c e d u r e  f o r  d i g e s t i o n  

j ~  A A A t ~  A A 

V V V V V V V 

0 1 1 0 0 1 0 = Specification for (}c~> 
1 0 1 0 1 0 0 = Specification for <]fl> 
1 1 0 1 0 0 0 = Specification for <]y> 
0 0 0 1 1 1 0 = Specification for <l(afly)> 

1 1 1 0 0 1 0 = Working list 
1 1 1 1 l 1 1 = Check list, initial value 

0 1 1 0 0 1 0 = S~?Yes . ' .  <In> 
1 0 0 1 1 0 1 
1 0 0 1 l 0 1 = C', = C? No .'. statement new, print 
1 0 0 0 0 0 0 = 0 ? No .'. digest not complete 

1 0 1 0 0 0 0 = Sfl? No .'. <]fl> not proved 

0 0 1 0 0 0 0 = Specification for <[aft> 
0 0 1 0 0 0 0 = S~fl? Yes.. .  <[afl> 
1 1 0 1 1 1 1 
1 0 0 1 1 0 1 = C', = C ? Yes ... statement not new, do not print 

1 0 0 0 0 0 0 = Specification for <[fly> 
1 0 0 0 0 0 0 = S? Yes ... ([fly) 
0 1 i 1 1 1 1 
0 0 0 1 1 0 1 = C', = C? No ... statement new, print 
0 0 0 0 0 0 0 = 07 Yes ... digest complete 

rare) are connec ted  to  i t  b y  l ines  which  are the  in ter -  
sect ions  of two  of t he  four  s t a t e m e n t s  <[c~>, <[fl>, <I7'> 
a n d  ( [ (a f l~)}  i t  is clear  t h a t  m a n y  of t he  127 possible  
combina t ions  can  be expressed  in  t e r m s  of those  alone,  
a n d  we now descr ibe  a p rocedure  wh ich  has  been  used  
for th i s  purpose .  The  ques t ion  of t h e  a d e q u a c y  of t he  
procedure  to  dea l  w i t h  a l l  possible  s i tua t ions  wil l  be 
r e t u r n e d  to  in  our  Discuss ion  § (iii). 

A m a c h i n e  p r o c e d u r e  f o r  d i g e s t i o n  

A compu te r  p r o g r a m m e  has  been w r i t t e n  in  wh ich  
successive d e t e r m i n a n t s  are  set  up  a n d  the  e igh t  
va lues  of each are  ca lcu la ted  if, a n d  on ly  if, (i) a t  l eas t  
one of t he  s ix  u va lues  i nvo lved  is >_ ½" a n d  (ii) t he  
va lue  of Da is f ound  to  be n e g a t i v e  w h e n  c~ = fl = 7' = - 
As each of t he  e igh t  s ign  combina t ions  is t r ied ,  a 1 is 
en t e r ed  in to  a p a r t i c u l a r  d ig i t  of a n  8-bi t  f ixed  po in t  
b i n a r y  n u m b e r  if D4 is f ound  to  be nega t ive .  Thus  
a n u m b e r  is s y n t h e s i z e d  w i t h i n  t he  m a c h i n e  which  
ind ica tes  which  p r i m i t i v e  s t a t e m e n t s  m a y  be made ;  
th i s  n u m b e r  is t e r m e d  the  w o r k i n g  l i s t  and  is d e n o t e d  
b y  W. 

For  example ,  

W =  1 1 1 

A A ~ .  A A 

V V V 

1 0 0 1 0 

impl ies  t he  f ive p r imi t i ve  s t a t e m e n t s  h a v i n g  l ' s  below 
them.  

We  also e s t ab l i sh  a c h e c k  l i s t ,  d e n o t e d  C, which  

* This condition is due to Kitaigorodski, see Discussion 
§ (i). 

i n i t i a l l y  has  a 1 in  each  of the  e igh t  posi t ions .  As 
each  d iges t  s t a t e m e n t  is fo rmed  zeros are p l a n t e d  in  
C in  pos i t ions  cor responding  to  t h e  p r imi t i ve  s ta te -  
m e n t s  con t a ined  in  t h e  s t a t e m e n t  formed,  so t h a t  w h e n  
the  d iges t  is comple te  W + C = - I  modu lo  256 ( i .e .  

W + C  has  a 1 in  e v e r y  place).  The  p rocedure  is 
i l l u s t r a t e d  i a  Tab le  1 in  which  t h e  f i r s t  four  l ines  
r ep resen t  t h e  speci f ica t ions  for t he  four  s t a t e m e n t s  
shown;  these  are f ixed  po in t  n u m b e r s  a n d  form p a r t  
of t he  p rog ramme .  The  n e x t  two l ines  i nd ica t e  s t a r t i n g  
condi t ions ,  a n d  on t h e  s e v e n t h  l ine  we col la te  W 
w i t h  t h e  spec i f ica t ion  for <l a ) ,  ( i .e .  fo rm a n u m b e r  
h a v i n g  a 1 whe reve r  W a n d  S~ h a v e  a 1, hence  the  
s y m b o l  &). Th is  is ach ieved  w i t h  a s ingle m a c h i n e  
i n s t r u c t i o n  on m a n y  computers .  N o w  in  th i s  example  
W con ta ins  S~ , . . .  W & S ~ = S ~ ,  if a n y  d ig i t  in  S~ 
were miss ing  in  W th i s  would  no t  be so; t h u s  t e s t i n g  
the  e q u a l i t y  of (W & S~) w i t h  S~ is e q u i v a l e n t  to  
t e s t i n g  for <] a}.  N e x t  we form ( - 1 - S )  (modulo 256), 
S be ing  t h e  spec i f ica t ion  c u r r e n t l y  be ing  considered.  
This  n u m b e r  has  a zero in  t he  pos i t ion  cor responding  
to each of t he  p r i m i t i v e  s t a t e m e n t s  con t a ined  in  ( ] a} ,  
a n d  l ' s  e lsewhere.  Th is  is t h e n  co l la ted  w i t h  C to  
form a new check l i s t  C ' ;  t h i s  new check l i s t  is com- 
p a r e d  w i t h  C a n d  found  to  be d i f fe rent ,  i .e .  some 
p r i m i t i v e  s t a t e m e n t s  n o t  p rev ious ly  accoun ted  for 
are accoun ted  for b y  ( I s > ;  ( In>  is there fore  a new 
s t a t e m e n t ,  no t  i nc luded  in  a n y t h i n g  foregoing.  <] a )  is 
there fore  p r i n t e d  a n d  C' replaces  C (becomes C). 
N e x t  we form the  q u a n t i t y  W + C + I  a n d  f ind  i t  
differs  f rom zero;  t h u s  the re  is a d ig i t  or d ig i t s  in  W 
no t  y e t  a ccoun ted  for  and  checked off i n  C; in  t h i s  
case t h e  s t a t e m e n t  ( n i f t y )  remains .  

On f ind ing  W + C + 1 :~ 0 t h e  p r o g r a m m e  con t inues  
to  cycle t h r o u g h  the  four  g iven  specif icat ions,  t r e a t i n g  
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each in the same way. W & S~ is the next to be formed, 
and this is found unequal to S~; therefore the state- 
ment ([fl) may not be made. Similarly with ([y> and 

When these four possibilities are exhausted the 
programme enters a double loop, so that  it takes 
the four given specifications in pairs beginning with 
a and ft. These two specifications are collated to form 
S~, the intersection of S~ and S~ being the specifica- 
tion for <{c~fl). The remaining steps are the same, 
S~  being used as the current value of S, and this 
time we find that  the statement (I ~fl> may be made, 
but that  C ' = C ,  so that  ([~fl> contains nothing new 
and is therefore not printed. 

Eventually the cycle reaches S~ and finds that  
(lfl~') is true and new and prints it, and this time 
( - l - S )  & C yields the complement of W and the 
digest is therefore complete. 

Note that  (Ic~fl},> is contained twice in the digest, 
the digest being inexact, but the process is quite 
unaffected by the fact that  this statement is checked 
off twice and the others only once. The programme 
may be entered at the double loop if W contains less 
than four digits, and a triple loop may be used to 
provide for the leading statement occurring alone. 
In practice this has been carried out on a machine 

using ten digit numbers; the only difference this 
makes is that  C is initially - 1  modulo 1024 and the 
spare digits in W and S are set to zero. The spare 
digits then have no effect on the process. 

T h e  d o u b l y  s y m m e t r i c a l  c a s e  

The foregoing is principally concerned with the general 
fourth-order case in which three indices h~, hj and h~: 
are independently chosen. If the choice is made such 
that  h~+hi=h~  then special properties appear and 
the determinant takes the form (2). In this case 
evidently 

0¢ ~ 80j8 j t8 iO 

~ 80kSkiSiO ~ 80kSj08~O 

y = SokSkjS~o = SokSioSjo = fl 
( a f l 7 )  = sj~s~skj = s~sjoS~o --  ~x 

(centrosymmet ric case). 

I t  follows that  we are not entitled to insert fl and 7 
into the expression for D4 with opposite signs, so 
that  the statements ( a t i l T > ,  ( a y l f l > ,  (fl~,}'~> and 
(~[afl} may never be made in this case even if testing 
for these leads to a negative value of (5). Furthermore, 
since fl is always equal to ~ and only those statements 

Table 2. T h e  a p p l i c a t i o n  o f  inequal i t i es  to a o n e - d i m e n s i o n a l  prob lem* 

3rd  o r d e r  
w i t h  4 t h  o r d e r  

S ign  ' s u m  a n d  un -  4 t h  o r d e r  c o n d i t i o n a l  C o r r e c t  
h ]UI s y m b o l  3 rd  o r d e r  d i f f e r e n c e '  c o n d i t i o n a l  s o l u t i o n  

1 0-177 a a a a a a a a a 
2 0"073 b b . . . . . .  
3 0"088 c ( - - a )  c 
4 0.240 d d d d ( + )  ( - - )  d d 
5 0.068 e e e a e - - a  (a) ( - - a )  
6 0-363 f f ae  ae  + ae  - -  -4- - -  
7 0.116 g be - - e  - - a  - e  a - a  a 
8 0"320 h h h - - a e  --  - - a e  -~- - -  + 
9 0"680 i i a b h  e a e - a  a - - a  

10 0.338 j a i  bh  ae  + ae  - -  + - -  
11 O. 137  k b d e h  a d  a d  a - a a d  ad  
12 0"198 1 - -  - -  ac  d 
1 3  0"178 m a 
14 0-146 n 
15 0-775 o f i  beh  a a a a a a 
16 0.370 p a f i  a b e h  + + + + + + 
17 0-395 q a f h  eh  - - a  - - a  - - a  - - a  - - a  - - a  
18 0.240 r + + + + + + + + 
19 0-036 s a 
20 0.060 t 

21 0'098 u e 
22 0.031 v 
23 0-246 w - - e  - - e  - - a  - - e  , a - - a  a 
24 0.623 x f ae  ae  + ae  --  + - -  
25 0.745 y a f  e e a e - - a  a - - a  
26 0.068 z 

N u m b e r  of  s igns  i n v o l v e d  11 17 17 20 19 19 19 18 
N u m b e r  of i n d e p e n d e n t  s igns  4 5 3 2 2 1 3 2 
N u m b e r  of  poss ib i l i t i e s  8 16 4 2 2 1 4 2 

a ( I n ( a e z ) ( d z )  > 

a ( l ( ac ) ( ce l )  > 

- a  ( (ae)J(ce l )  ) 

a ( l l ( a c )  > 
+ 

- a <l(cev)(,c) > 

- - a  ( ( e m ) ] d >  

a ( I d ( a m )  > 
+ 

a (dl (as) > 
+ 
- a  ( d l ( e u ) )  
+ 

a ( ( m u ) ( d l ) :  ( e lm)  > 

, (l(dZ)(a~)} 

a 

~ a  

+ 

* N o t e  a d d e d  i n  p r o o f .  T h i s  h a n d - d r a w n  t a b l e  h a s  s ince  b e e n  c h e c k e d  b y  c o m p u t e r ,  u se  b e i n g  m a d e  of  t h e  t e c h n i q u e s  de -  
s c r i b e d  in  t h e  D i s c u s s i o n  § (iv),  a n d  i t  h a s  b e e n  f o u n d  t h a t  t h e  s t a t e m e n t  ( I d ( a m ) > ,  t h o u g h  t r u e ,  w a s  n o t  p r o v e d  a n d  w a s  
m a d e  in  e r ro r .  H o w e v e r ,  t h e  a d d i t i o n a l  s t a t e m e n t s  (1] (eu)> a n d  ((aez)]  (dz)> m a y  also b e  p r o v e d .  
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containing fl and 7 in the same partition can arise, 
it follows that  y may be ignored altogether, i.e. 

and we have in effect only four primitive statements 
in this case. These are ([c~fl), (alfl>, <#Is> and <~#1>. 
The simplest (if not the most efficient) way to deal 
with this situation in the digestion programme is to 
suppress the unwanted digits in S and W by collation 
with 11000011. By this procedure both the general 
and this special case can be handled by the same 
programme. 

This special case is superior to the general case in 
that  a statement with /=1  results from only two 
primitive statements. Thus (Ic¢) may be proved in 
this case where the general case may fail even if the 
u values are the same in both cases. 

An example 

The principles outlined in this paper have been 
applied to a synthetic one-dimensional problem which 
was created originally by Sayre (1952) for the purpose 
of testing his sign determining equation. The problem 
corresponds to a centrosymmetric structure containing 
eight equal atoms in a unit cell of 20 A dimension, 
and the given data reach to the Cu Kc~ limit. The 
results of this trial are shown in Table 2 where the 
sign of each U is denoted by a letter. When the 
third-order inequalities are applied exhaustively seven 
statements of the type ([c¢> may be made, sufficient 
to eliminate the seven sign symbols j, o, p, q, r, x, y. 
At this stage eleven signs are inter-related, only four 
of which are independent. 

In the next column we include the results of the 
application of fourth-order inequalities in which 
h~+hj=h~,  so far as these result in statements of 
length one. At this stage 17 signs are inter-related, 
five of which are independent, and this situation 
represents the limit that  may be reached by the 
application of conventional inequalities. The next 
column embodies all the statements of length one 
obtainable from the fourth-order inequalities; no 
further signs are involved, but the 17 are now ex- 
pressible in terms of only three independent signs, 
and the entries in this column are unconditionally 
true. 

There then remain eleven statements of lengths two 
or three which are written alongside the table in terms 
of the sign symbols remaining. These statements can 
only be used conditionally, and in the next five 
columns the bracketed signs have been chosen arbi- 
trarily as a matter of trial and error. For example, 
if d is supposed negative, then on the basis of the 
seventh statement listed, the product (am) must be 
positive, or m = a. Furthermore, by the sixth statement 
the product (era) is negative, hence e = - a ,  and by 
the last statement l = d = - .  Thus nineteen signs are 
now known on the basis of one supposition, the sign 

of a being immaterial. The correct solution is shown 
in the last column for comparison. 

Discussion 

In this discussion we comment on six features of the 
problem: (i) the extent of the information provided 
by the approach, (ii) the build-up of information 
from determinants of various orders, (iii) the capacity 
of the machine digestion process to deal with all 
situations which may arise, (iv) the utilization of 
information arising from different determinants, i.e. 
non-associated statements, (v) crystallographic sym- 
metry, and (vi) the effects of experimental errors. 

(i) The extent of the information provided by the approach 
The results given in Table 2 have already shown 

what is generally true that  the information derivable 
from fourth-order inequalities exceeds that  available 
from conventional inequalities. The gain may seem 
marginal, but this is only because the territory of 
fourth-order inequalities is not virgin ground, and 
one might expect the gain of fifth-order inequalities 
over fourth-order to be comparable with the gain of 
fourth over third. 

The writer has not made any statistical study of 
the amount of information that  one may expect to 
arise when inequalities of order n are applied to a 
structure containing N atoms. Kitaigorodski (1957), 
however, has studied this problem in the simplified 
case in which all the u values appearing in a deter- 
minant are assumed equal; he then calculated Dn as 
a function of this single variable and the signs of the 
primary tri-products. He showed that  unless 

u >_ 1 / (n-1)=~ 

all combinations of signs will satisfy Dn >_ 0, and he 
terms ~ the 'boundary' for inequalities of order n. 
Evidently, in a real case in which several different 
u values occur, at least one must exceed ~ if the 
leading statement is to arise. 

This gives the appearance that  as n increases the 
amount of information obtainable will increase as 
decreases. As a matter of experience this is so, but 
one should not take ~ to be a simple measure of the 
strength of an inequality because an inequality with 
a low boundary must yield more primitive statements 
than need one with a higher boundary in order to 
provide the same information. For example, third- 
order inequalities have boundary ½- and one statement 
from such an inequality proves a sign product positive ; 
fourth-order inequalities have boundary ½ but must 
yield four primitive statements to prove a sign 
product positive. Kitaigorodski also shows that  for 
this simplified problem the value of u that  must be 
exceeded in order to prove all the primary tri-products 
positive also decreases as n increases, but is a com- 
paratively slowly varying function of n. He also 
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develops these ideas to the conclusion that  inequalities 
alone should be capable of solving structures for which 
V ~ >  ~ 0.10 to 0.15. 

In  this paper we comment on the experience 
gained with the example already given. The problem 
is clearly too small to enable one to draw precise 
conclusions concerning the strength of the method 
when applied to a crystallographic problem, but the 
behaviour of the method was as follows. 

There are 169 distinct connecting determinants of 
order 3 which may be set up; of these seven yielded 
statements of length 1. There are 1378 distinct 
connecting determinants of order 4, of which 270 
produced at  least one primitive statement, a total  of 
nearly 900 primitive statements being obtained. Many 
of the non-primitive statements so produced were 
repetitive; for example, the statement (l(axy)} was 
proved by  25 different fourth-order inequalities, 
in fact by every one which contains 

1 u(1) u(25) 
U(1) 1 U(24) 
U(25) U(24) 1 

as a minor. Every statement arising from the third 
order was obtained again from the fourth order. 
The trailing statement,  which is required to prove a 
tri-product negative, occurred only once and yielded 
((awx)[}. Significantly, this arose from a determinant 
having hi ÷ h~-- h~. No contradictions arose. 

(ii) The build-up of information from determinants of 
various orders 

We have already seen tha t  fourth-order inequalities 
regenerate information obtainable from the third- 
order level, and we now enquire whether inequalities 
of order n necessarily regenerate all the information 
obtainable from inequalities of order m <n.  

In  general 

0 <_ D,~ = A 1 A g . - B B  _ A1A2--__[BI2 
C C 

in which A~ is a connecting determinant (a minor of D) 
of order ( n - 1 )  obtainable from Dn by deleting the 
i th row and the i th column. A,. is similarly obtained 
by deleting the j t h  row and j t h  column, B is obtained 
from D by deleting the i th row and j t h  column, 
and B is the complex conjugate of B obtained by 
deleting the j t h  row and i th column. C is obtained 
from Dn by deleting the i th and j t h  rows and columns, 
being of order ( n - 2 )  (Muir & Metzler, 1960, § 149, 
p. 134). The correct set of signs must  then satisfy 
the four requirements 

Dn_>0, AI_>0, A2>_0, C_>0. 

to meet two of the remaining three requirements, 
i.e. tests of inequalities of orders ( n - l )  and ( n - 2 )  
would yield information in such circumstances which 
the inequality of order n would fail to provide. If, 
however, a trial  set of signs is known to satisfy the 
inequalities of orders ( n - l )  and ( n - 2 )  then the 
requirement D~ >_ 0 takes the form 

A1A2 >_ IB] 2 

which is clearly stronger than A1 _> 0 and A2 >_ 0. 
Thus an inequali ty of order n adds to, but  does not 
necessarily reproduce, the whole of the information 
obtainable from inequalities comprising its principal 
minors. 

Taken collectively, however, the picture is rather 
different. We consider the case n = 4  (all sign com- 
binations then satisfy C >_ 0) and consider all D4 for 
which h~ and hi are constant and hg varies from one 
to another. A1 then depends only on a and is common 
to all these inequalities, A~. depends only on (a/37) 
and varies from one to another.* Suppose tha t  A1 is 
capable of proving ~[a} then /)4 will also prove it  
unless at  least one of the four combinations of/3 and ? 
with a negative makes A~ sufficiently negative to 
satisfy A1A~ >_ IBI ~. While this appears possible in 
any one instance it is virtually certain tha t  it  will not 
happen in every instance, i.e. for every hk. Thus 
collectively fourth-order inequalities may be relied on 
to reproduce all the information available from the 
third order although individually they may not. 

For orders greater than  four this appears to remain 
true, although the argument is complicated by the 
fact tha t  a wrong sign combination may give C < 0. 

(iii) The capacity of the machine digestion process to deal 
with all situations which may arise 
None of the specifications used in the machine 

digestion process has a 1 in the position corresponding 
to the trailing statement (aft?J}. Therefore, if this 
s tatement should arise the process will fail as the 
digest could never be completed. There appear to be 
two ways in which this deficiency may be made up; 
both involve applying the method as it  stands to 
completion and entering an extension of the digestion 
programme when it is found that  the digest produced 
is still incomplete. These two extensions may be 
modelled as follows: 

(a) The four specifications are replaced by their  
complements, whereupon they become specifications 
for the converse statements, and the programme is 
then re-entered, i.e. S~=10110010 is replaced by 
01001101, the specification for (a]}, etc. 

(b) The extension uses specifications for the three 
statements ((fly)l), ( (Ta)l )  and ((aft)]) (i.e. 11000011, 

Evidently it  is possible for a wrong set of signs to * The first and last rows and columns of D 4 have here 
satisfy the first requirement by failing simultaneously been s e l e c t e d  fo r  deletion. 
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(o) (b) 

Fig. 2. Two special cases. For explanation, see text. 

10100101 and 10011001") and is otherwise similarly 
constructed. 

(b) is thought  to be superior to (a) as we ma3/ see 
oll general grounds. By considering equation (5) in 
which each tri-product is multiplied by a positive 
numerical par t  and prefaced by a + sign we see tha t  
these may be demonstrably positive. The tetra- 
products are also multiplied by positive numerical 
parts and prefaced by - signs, so tha t  we might 
expect to be able occasionally to prove a tetra-product  
negative; it therefore seems more sensible to search 
for negative tetra-products (scheme (b)) than negative 
tri-products (scheme (a)). 

To compare these further we suppose tha t  the 
situation is such tha t  the s tatement  ( h i )  may be 
proved (in which case scheme (a) would appear 
preferable to (b)), then the situation is represented 
diagrammatical ly in Fig. 2(a) in which the five 
primitive statements which must  then have occurred 
are marked with solid circles, the heavily outlined 
face being the (~])  face. Algebraical studies have 
shown tha t  if these five statements arise then it  is 
likely tha t  at  least one of the remaining statements 
will also arise, although a t tempts  to prove tha t  this 
must happen have not so far been successful. If one 
of these does also arise then there are two conse- 
quences, (i) one of the three diagonal planes linking 
([~xfy) and ( a f y l }  will be completed, i.e. one of the 
statements ((flY)l), ((Y~)I) or ( ( ~ f ) l )  can be made, 
and (ii) either one of the faces (for (lfl) and ([y))  
or the tetrahedron (for ( l (af ly)))  will also be corn- 

* These specifications may be derived from Soc, S~ and S r 
by means of the non-equivalence function (see § (iv)). The 
specification for a statement involving a product such as 
(l(afl)) is given by S(~,~)=(So, ~ S/~), and the specification 
for ((afl)l), written (a~)S, is the complement of this. Similarly 
S(~4~,)= (S: ~ S~ ~ S~,). 

pleted, i.e. in such a case the digest need not ex- 
plicitly contain ( h i )  but  could be expressed in a form 
such as ( f f l) . ((afl)[)  in which case scheme (b)would 
serve as well as (a), the la t ter  having lost its apparent  
advantage. 

In  the rare (if not impossible) event of a sixth 
primitive statement failing to arise, the process would 
still function but  would fail to include a s tatement 
of length 1 in the digest, so tha t  the fact tha t  an 
unconditional s tatement  could be made would be 
masked. 

Another difficult circumstance is i l lustrated in 
Fig. 2(b). Again five primitive statements are sup- 
posed to have arisen, of which the four si tuated 
on the indicated diagonal plane are sufficient to yield 
([(y~)) .  The machine digestion procedure outlined 
above would render this as 

(I (I fy ) .  (I (I y( fy)) 

and again the unconditional s tatement  would be 
obscured. However, if these five statements occur it 
appears likely (if not certain) tha t  one of the remaining 
primitive statements (not (~xfy])) will also occur; 
in which case we have the situation tha t  ( l (y~))  can 
only be proved in circumstances such tha t  ( ]y )  and 
( ] a )  or ( I f )  and ([(afly)} may be proved, which 
the existing procedure can handle. 

The whole question of the occurrence of these rare 
and difficult combinations and the technique for 
handling them should they arise is continually under 
review. 

(iv) The utilization of information arising from different 
determinants 
The foregoing has been principally concerned with 

the digestion of associated primitive statements. In 
this paragraph we outline a scheme which is cur- 
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rently under development for the systematic applica- 
tion of the results to the individual signs s~j. For this 
purpose we utilize the 'non-equivalence' function 
which is a feature of many computers, as it enables 
us to perform algebraical operations on signs and sign 
products. 

Initially we allocate a sign symbol to each sign as 
in Table 2 and represent these in the machine according 
to the following scheme, 

+ = 0000.. .0000 
- = 1 0 0 0 . . . 0 0 0 0  

a = 0100.. .0000 
b = 0010.. .0000 

w = 0000.. .1000 
x = 0000.. .0100 
y = 0000.. .0010 
z = 0000...0001 

the length of each 'word' being one greater than the 
number of independent signs to be determined, the 
first digit having the significance - ,  the second a, etc. 
The product of any number of such signs is then 
obtained using the non-equivalence order which takes 
two such 'words' as factors and places a zero in the 
result wherever the factors have the same digit, 
and a one wherever they differ. This is binary addition 
without carry. 

Suppose a determinant yields (1~) with a = ( a x y )  
then we form the sign symbol for c~ (using the non- 
equivalence order twice) and obtain 

a = 0 1 0 0 . . . 0 1 1 0 =  + . 

Since c~ is positive we may multiply any sign symbol 
by c¢ and use this to eliminate one such symbol. 

We choose the highest in o¢ for elimination--this 
is y, and then multiply any sign symbol containing 
y b y  o¢ 

y = 0000.. .  0010 
a - - a x y = O l O 0 . . . 0 1 1 0  

product--new y = 0100. . .  0100 = a x ,  

thus y is replaced by ax. If then it is proved that  the 
product (awx) is negative, so that  

( - a w x )  = 1100...  1100= + 

we may use this to eliminate x, thus 

x = 0000. . .  0100 
- a w x =  1100.. .  1100 

product = new x = 1100...  1000 = - aw 
y=0100 . . .0100  

- a w x =  1100.. .  1100 
product = new y = 1000.. .  1000 = - w. 

Thus a record may be kept in the machine equivalent 
to Table 2. 

The same technique may also be used to test for 
relationships which may exist between a, fl and y 
before the values of D4 are calculated. For example, 
in the special case having hi + hj = he the product (fly) 
may, by this means, be found to be positive at the 
outset, and could be used as the cue to apply the 
special procedure already described in this connection. 
This is probably the best way of handling this and 
other special cases, despite the fact that  it may seem 
simpler to test for the relationship h~ + hj = he, because 
the identity f l - y  may arise in two ways, either 
(i) because of such a vector relationship between 
the indices or (ii) because other inequalities previously 
employed have already established the fact,* and the 
second case will only be revealed by the use of this 
'non-equivalence' technique. 

(v) Crystallographic symmetry  

It  is well known that  relationships among structure 
factors arising from space group symmetry, when 
allied to inequality relationships, yield inequalities 
of special form and utility characteristic of the space 
group involved. However, the approach being adopted 
is to utilize such crystallographic information at the 
outset by assigning sign symbols embodying such 
constraints. Equal structure factors may be given the 
same sign symbol, those which are equal but opposite 
in sign being given sign symbols which differ only 
in the first digit. All general inequalities then become 
special to the space group concerned and the proce- 
dures outlined in (iv) above take full account of such 
symmetry. Further, the special forms given by Goed- 
koop (1950) and MacGillavry (1950) including crystal- 
lographic symmetry occur spontaneously when ap- 
propriate values of h are chosen. 

(vi) The effects of experimental errors 

Erratic experimental data may cause trouble either 
by failing to produce statements which it ought to 
be possible to make, or by producing statements which 
it ought not to be possible to make. The second type 
of fault is much more serious as it may lead to contra- 
dictions. The question of the accuracy required in 
the data for the successful application of inequality 
methods has not yet been studied, though it is pret ty 
clear that  the requirements become more stringent 
as the order of inequality increases. Neither has the 
practical problem of dealing with inaccurate data been 
studied although three approaches to this question 
are in mind. 

Firstly, since all inequalities depend on the con- 
straint ~ > 0 any apparent malfunction of the method 
must arise from the fact that  the given (erratic) set 
of data gives regions of negative electron density even 

* In  this case the  de t e rminan t  would no t  necessarily be 
symmetr ica l  about  both  diagonals,  bu t  it would call for the  
same t r e a t m e n t  as those which are. 
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with  the correct set of signs.* Such negat ive regions 
m a y  be e l iminated  b y  adding a constant  to ~, i.e. 
adding a constant  to F(000) and  renormalizing.  This 
provides a general  slackening of the constraints  which 
mus t  remove any  contradict ions which m a y  arise, bu t  
at  the expense of fai l ing to obta in  some correct 
informat ion  tha t  i t  ought to be possible to obta in  
wi th  good data.  

The second approach is to note with what  f requency 
a given s ta tement  arises. I t  has a l ready been pointed 
out t ha t  a number  of different  de te rminants  m a y  
yie ld  the same result,  and  if a par t icular  sign product  
is proved positive m a n y  t imes and negat ive only a 
few then  i t  would seem reasonable to accept i t  as 
positive. This approach would great ly  complicate the 
machine programme,  but  i t  is a possibil i ty.  

The th i rd  possibi l i ty  involves a t taching a weight 
or credence to each s ta tement  derived from the value 
of D. Thus a s t a tement  arising from a de te rminan t  
which is s t rongly negat ive would be given more 
credence t h a n  one rising from a de te rminan t  which 
is close to zero. In  this  way the  true s ta tement  in  a 
contradictory pair  m a y  be recognized by  its greater 
weight. This again would great ly  complicate the 
procedure and is regarded as a last  resort. 

From the practical standpoint it may turn out that 
the method requires data produced by counters or 
possibly photometry rather than eye-estimation. 

A P P E N D I X  

In  this  Appendix  we show tha t  the four th  order 
inequa l i ty  having hi + hj  = hz is equivalent  to the pair  
of sum and difference inequalit ies.  We have 

O < D  = 
1 U(h,)  U(h~) U(h ,  + h~) 

U(h~) 1 U ( h j - h d  U(hj) 

U(hl) U(h/--  hj) 1 U(h,) 

U(hi + hi) U(h~) U(hi) 1 

which for b rev i ty  we write as 

O g D =  
l a b c  
a l d b  
b d l a  
c b a l  

l a b  e _  a b c e  
a l d  l d b  
b d l  d l a  

1 d 

A 2 _ B 2 

l -- d e 

(Muir & Metzler, 1960, § 149, p. 134), A and  B 
representing the two th i rd  order determinants ,  i.e. 

* Series termination effects may cause the transform of 
the U's to contain negative regions with the correct set of 
signs, but provided that u values lying outside the limiting 
sphere are not employed (treated as zero) in the inequalities 
this type of negativity in Q will do no harm. 

A - B  
o - \-y-:~_ d / 

Now the denominators  are both positive, so tha t  
the quant i t ies  ( A + B )  and ( A - B )  must  have the 
same sign. But  A is i tself  a third-order connecting 
determinant ,  and mus t  be positive, therefore of the 
quant i t ies  (A + B )  and ( A -  B) at least one is positive, 
therefore both are positive, i.e. 

and 

A + B / 
~ / > _ o  

A - B  ( o 

Expanding, we find 

A = 1 + 2 a b d -  a s - b 9 -  d e 
B = a e d  + bad + c -  2ab - cd 2 

A + B = 2 a b d -  2ab - a 2 + a e d -  b 2 + bad + 1 - d e + c -  cd 2 
= (1 - d ) [ - 2 a b - a e - b e +  (1 +d)(1 +c)]  

A + B  
- [ - ( a + b ) e + ( l + d ) ( l + c ) ]  _> 0 

1 - d  

i.e. [ U ( h d +  U(hs)] e _ [1+  U ( h s - h d ] [ l +  U(h j+h , ) ] .  

Likewise 

A - B  
> 0 yields 

l + d  - 

[U(h d - U(hj)] e < [1 - U ( h y -  hd][1 - U(hj + h d ] .  
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Prof. H. Lipson, F.R.S.,  for his encouragement  in 
this  work, and to Dr M.M. Woolfson for m a n y  
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